
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

PLANNING AND GOAL
RECOGNITION WITH

SAT-BASED APPROACHES: A
SURVEY

KIN MAX PIAMOLINI GUSMÃO

Monograph submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Felipe Meneguzzi

Porto Alegre
2023

ACKNOWLEDGMENTS

I want to thank my advisor, professor Felipe Meneguzzi for all the support during

the development of this survey, and for allowing me to use figures and practical examples

from his lecture slides in this survey.

PLANEJAMENTO E RECONHECIMENTO DE OBJETIVOS COM

ABORDAGENS BASEADAS EM SAT: UMA PESQUISA

RESUMO

O reconhecimento de objetivos e planos tem sido o foco de muitas pesquisas na

área de inteligência artificial e planejamento automatizado, uma vez que as aplicações

são diversas, como cuidado a idosos, detecção de intrusão, entre outras. Complementar-

mente, o campo de reconhecimento de objetivos em ambientes multiagente tem crescido

muito nos últimos anos, pois em muitos casos não há um único agente atuando, mas um

grupo de agentes no mesmo ambiente que podem ou não estar cooperando em times

em direção a um objetivo comum ou a múltiplos objetivos. Existem muitas soluções para

problemas de reconhecimento de objetivos, em cenários de agente único e multiagente,

que se baseiam em técnicas de planejamento e na teoria do domínio de planejamento.

No entanto, há pouco trabalho no campo para reduzir um problema de reconhecimento

de objetivos a um problema SAT e usar um resolvedor de problemas SAT padrão para

resolvê-lo. Enquanto isso, esse tipo de solução é comum no campo de planejamento au-

tomatizado. Nesta pesquisa, analisamos o embasamento teórico e as soluções relevantes

nas áreas de planejamento e reconhecimento de objetivos de agente único e multiagente,

e o uso de soluções baseadas em SAT nessas áreas de pesquisa.

Palavras-Chave: inteligência artificial, planejamento, planejamento multiagente, plane-

jamento automatizado, reconhecimento de objetivos, reconhecimento de objetivos

multiagente, satisfatibilidade booleana.

PLANNING AND GOAL RECOGNITION WITH SAT-BASED

APPROACHES: A SURVEY

ABSTRACT

Goal and plan recognition have been the focus of much research within the field

of artificial intelligence and automated planning, since the applications are manyfold, such

as elder care, intrusion detection, among others. Complementary, the field of multiagent

goal recognition has grown a lot in the past years, as in many cases there is not a single

agent acting, but a group of agents on the same environment that may or may not be

cooperating as a team towards a common goal or towards multiple different goals. There

are many solutions for goal recognition problems, in both single and multiagent scenarios,

that leverage on planning techniques and planning domain theory. However, there is little

work on the field on reducing a goal recognition problem to a SAT problem and using a

standard SAT solver to solve it. Meanwhile, this kind of solution is common in the auto-

mated planning field. In this survey, we go over the theoretical background and relevant

solutions on both single-agent and multiagent planning and goal recognition areas, and

the usage of SAT-based solutions in those research areas.

Keywords: artificial intelligence, planning, automated planning, multiagent planning,

goal recognition, multiagent goal recognition, boolean satisfiability.

LIST OF FIGURES

Figure 2.1 – Planning environment example . 9

Figure 2.2 – Blocks World initial and goal state examples. 12

Figure 2.3 – Planning graph general structure . 13

Figure 4.1 – Multiagent planning environment example . 23

Figure 5.1 – Goal recognition environment example . 28

Figure 6.1 – Multiagent goal recognition environment example 31

LIST OF ACRONYMS

CDCL – Conflict-Driven Clause Learning

CMAP – Centralized Multi-Agent Planning

FD – Fast-Downward Planning System

FF – Fast-Forward Planning System

HSP – Heuristic Search Planner

MAGR – Multiagent Goal Recognition

MAP – Multiagent Planning

MAPR – Multi-Agent Planning by Plan Reuse

MAPRAP – Multiagent Plan Recognition as Planning

MA-PDDL – Multiagent PDDL

MA-STRIPS – Multiagent STRIPS

OMT – Optimization Modulo Theory

PDDL – Planning Domain Definition Language

P-MAPRAP – Probabilistic Multiagent Plan Recognition as Planning

PMR – Plan Merge by Reuse

RPG – Relaxed Planning Graph

SAT – Boolean Satisfiability Problem

SMT – Satisfiability Modulo Theory

STRIPS – Stanford Research Institute Problem Solver

VSIDS – Variable State Independent Decaying Sum

CONTENTS

1 INTRODUCTION . 8

2 AUTOMATED PLANNING . 9

2.1 FORMALISM AND NOTATION . 9

2.2 PROBLEM DESCRIPTION LANGUAGES . 10

2.3 FRAMEWORKS AND ALGORITHMS . 13

3 PLANNING AS SATISFIABILITY . 16

3.1 BOOLEAN SATISFIABILITY PROBLEM (SAT) . 16

3.2 PROBLEM ENCODINGS . 18

3.3 SAT SOLVING FOR PLANNING AS SAT . 21

3.4 SAT-BASED PLANNERS . 22

4 MULTIAGENT PLANNING . 23

4.1 FORMALISM AND NOTATION . 23

4.2 PROBLEM DESCRIPTION LANGUAGE . 24

4.3 FRAMEWORKS AND ALGORITHMS . 27

5 GOAL RECOGNITION . 28

5.1 FORMALISM AND NOTATION . 28

5.2 FRAMEWORKS AND ALGORITHMS . 29

6 MULTIAGENT GOAL RECOGNITION . 31

6.1 FORMALISM AND NOTATION . 31

6.2 FRAMEWORKS AND ALGORITHMS . 32

6.2.1 A CLASSICAL "PLAN RECOGNITION AS PLANNING" APPROACH 32

6.2.2 PROBABILISTIC APPROACHES . 33

6.2.3 SAT-BASED APPROACHES . 34

7 CONCLUSION . 35

REFERENCES . 36

8

1. INTRODUCTION

Correctly inferring an agent’s goal based on observations over their actions has

multiple real-world applications [39]. A few examples are elder-care applications [15], in-

trusion detection systems [16], exploratory domain models [37, 40], among many others.

Additionally, there are many cases where we might not want to identify the intent of a

single agent, but of a group of agents who might or might not be cooperating towards a

common goal.

Recent approaches to both single-agent and multiagent goal recognition have

managed to obtain good accuracy in the recognition process using different approaches [44,

42, 1, 2, 56, 57]. The use of SAT solvers for goal recognition tasks has been, however,

scarce over the years, with the most prominent example being the use of Weighted MAX-

SAT by Zhuo et al. for multiagent scenarios [55, 56, 57]. This differs from automated

planning, the overarching area, which extensively uses satisfiability approaches [23, 26,

12, 47, 11].

Given the performance of SAT-based approaches to solve planning problems that

allow multiple parallel actions [47], we aim to further explore the usage of SAT-based so-

lutions for planning and goal recognition applications in both single-agent and multiagent

scenarios. Our goal with this survey is to revisit the theoretical background around both

single-agent and multiagent planning and goal recognition and the usage of SAT-based

solutions to solve problems in those fields.

We organize the remainder of this survey as follows. First, in Chapter 2, we revisit

the formalism and notations, the problem description languages, and some frameworks

and algorithms used in single-agent automated planning. In Chapter 3, we revisit the the-

oretical background around the Boolean Satisfiability Problem (SAT), and the way that SAT

and planning fields merge, going over the different problem encodings, SAT-solving strate-

gies used in planning applications, and some single-agent planners that rely on SAT-based

approaches. In Chapter 4, we discuss multiagent planning, its formalism and notations,

problem description language, and some frameworks and algorithms. In Chapter 5, we

discuss single-agent goal recognition, its formalism and notations and some frameworks.

In Chapter 6, we discuss multiagent goal recognition, its formalism and notations, and

some frameworks and algorithms. Finally, in Chapter 7, we summarize our survey and

discuss our final remarks.

9

2. AUTOMATED PLANNING

Automated planning or simply planning is the task of obtaining a sequence of

actions (a plan) that can achieve a goal state starting from some initial state [17]. Fig-

ure 2.1 depicts an example of a planning environment with multiple possible goals, where

we might want to derive a plan to direct our robot agent to one of the goals. Planning

has multiple applications in many fields, such as video-games AI [27], autonomous sys-

tems [21], and many others. In this Chapter, we outline the automated planning field by

going over the formalism and notation, in Section 2.1, the main languages for describing

problems, in Section 2.2, and the main frameworks and algorithms, in Section 2.3.

GOAL 1 GOAL 2

Figure 2.1 – Planning environment example

2.1 Formalism and Notation

There are two basic structures in planning: facts and actions. Facts are ground

predicates associated to zero or more terms (τ1, τ2, ..., τn). If we take the well-known plan-

ning domain Blocks-World as an example [32], we could have a fact (on a b), where the

predicate on is associated to the terms a and b, representing the fact that block a is on top

of block b, or not (on a b), representing the fact that that block a is not on top of block b.

A state comprises a conjunction of facts and describes the environment state at a given

time step.

Actions are operators instantiated to free variables, where each variable repre-

sents an object of the environment. An operator a is a tuple a = ⟨name(a), pre(a), eff (a)⟩,
where name(a) is the name or description of the operator, pre(a) are the preconditions

of the operator, i.e. facts that must be true before the operator is executed and eff (a) =
eff (a)+∪eff (a)− are the effects of the operator, where eff (a)+ is an add-list of facts, i.e. facts

that become true once the operator executes, and eff (a)− is a delete-list of facts, i.e. facts

that become false once the operator executes.

10

In Blocks-World, we obtain the action (unstack a b) by instantiating the operator

unstack to the variables a and b, representing the action to remove block a from the top

of block b. We say that an action is applicable at a given state S if its preconditions are

satisfied in that state, i.e. ∀p ∈ pre(a), p ∈ S. When an agent performs an action at a given

state S, it generates a new state S′, where S′ = S\eff (a)− ∪ eff (a)+.

A classical planning domain definition is a tuple Ξ = ⟨Σ,A⟩, where Σ is a finite set

of ground facts and A is a finite set of ground actions, i.e. all facts and actions possible to

occur in the planning domain. A planning instance is a triple TP = ⟨Ξ, I, G⟩, where Ξ is the

planning domain definition, I is the initial state, and G is the goal state. Finally, a plan is a

sequence of actions π = ⟨a1, a2, ..., an⟩ that modify the initial state I into the goal state G.

2.2 Problem Description Languages

The first standardized language for describing planning problems is STRIPS, named

after that planner that first used it, the Stanford Research Institute Problem Solver [14].

Using STRIPS, one can define the initial and goal states and a set of operators. Each oper-

ator has a name, a set of preconditions, a set of effects and, optionally, a set of variable

constraints.

For years, STRIPS was the standard language for defining planning problems, until

the Planning Domain Definition Language (PDDL) was introduced in 1998 [36]. Currently,

PDDL is the standard language for defining planning domains and problems. It is mostly

derived from STRIPS, maintaining all of its features, while having greater description ca-

pabilities that allows one to define such things as object types, negated preconditions,

conditional effects, among other features, being considered an evolution to STRIPS.

The definition of a full planning instance in PDDL is comprised of two files: a

domain file and a problem file. The domain file contains the information needed to define

a planning domain: a list of fact predicates and a list of action operators. As previously

established, the list of facts is a list of predicates related to zero or more terms. In contrast,

the list of actions is a list of operators with defined preconditions and effects. Listing 2.1

depicts an example of a simple definition of the Blocks World planning domain.

1 (define (domain blocks)
2

3 (:requirements :strips)
4 (:constants-def table)
5

6 (:predicates (on ?a ?b)
7 (block ?b)
8 (clear ?b))
9

11

10 (:action move
11 :parameters (?b ?x ?y)
12 :precondition (and (on ?b ?x)
13 (clear ?y)
14 (clear ?b)
15 (block ?b)
16 (block ?y)
17)
18

19 :effect (and (on ?b ?y)
20 (clear ?x)
21 (not (on ?b ?x))
22 (not (clear ?y))
23)
24)
25

26 (:action moveToTable
27 :parameters (?b ?x)
28 :precondition (and (on ?b ?x)
29 (clear ?b)
30 (block ?b)
31 (clear ?x)
32)
33

34 :effect (and (on ?b table)
35 (clear ?x)
36 (not (on ?b ?x))
37)
38)
39)

Listing 2.1 – Simple Blocks World domain definition

The file defines a list of predicates applied to variables, preceded by the "?" sym-

bol, as the ground predicates, or facts, for the domain. We see predicates to verify that

a given block is on top of another given block, to check whether a given object is a block

and to check whether a block is clear, i.e. if there are no blocks on top of it.

The definition also contains a list of operators, each denoted by the reserved

word "action". As in the formal definition, each action definition must include an action

name, the list of variables that action takes, a list of preconditions regarding the variables,

in the form of a conjunction of facts, and a list of effects, also as a conjunction of facts.

The positive facts represent the add-list of effects, while the negated ones represent the

delete-list.

Having the domain defined, we can then define the planning instance, or the

problem. The problem must be defined in a separate problem file, containing information

12

such as the objects over which the facts and actions from the domain will be applied, the

initial state and the goal state. Listing 2.2 depicts a problem definition for the previously

defined domain.

1 (define (problem pb1)
2 (:domain blocks)
3 (:objects a b c table)
4 (:init (on a table)
5 (on b table)
6 (on c a)
7 (block a)
8 (block b)
9 (block c)

10 (clear b)
11 (clear c))
12 (:goal (and (on a b)
13 (on b c)
14)
15)
16)

Listing 2.2 – Blocks World problem definition example

The first thing in the problem definition must be the problem name, defined in

line 1. The next definition is the planning domain of the problem, as defined in line 2. It

must also define the list of objects in the instance, as defined in line 3, the initial state,

and the goal state. The initial state (line 4) is defined by a list of facts over the defined

objects, while the goal state (line 12) is a conjunction of facts over the objects. Figure 2.2

illustrates the initial and goal states defined in Listing 2.2.

Start State Goal State

B A

C

A

B

C

Figure 2.2 – Blocks World initial and goal state examples.

13

2.3 Frameworks and Algorithms

The first and simplest algorithms for solving planning problems use forward or

backward search strategies. STRIPS is one of the first and better known algorithms at the

beginning of planning research [14]. Like its predecessors, STRIPS uses backward search,

but reduces the search space by applying some strategies. One of these strategies is

only considering sub-goals that are preconditions to the last operator added to the plan

and committing to execute a given operator, not backtracking over this commitment if

the current state satisfies all the operator’s preconditions. Apart from being one of the

first algorithms to apply planning-specific strategies to planning algorithms, STRIPS also

defined the first standard language for defining planning problems.

Years later, another planner would become a landmark in the automated planning

research field. The Graphplan planner [4] uses a graph to annotate problem information,

which helps prune sub-goals in the backward search done in the solution phase of the

algorithm. In this graph, every even level is a fact level, where each node represents a

ground fact, composing the state at that time step. Complementary, every odd level is an

action level, where each node represents a ground action that is applicable at that time

step, i.e. its preconditions are satisfied at that time step.

The first level contains every fact in the initial state, while the last level contains

every fact in the goal state. Every fact node connects to the actions in the next level

to which it is a precondition, while every action node connects to the facts in the next

level that are an effect for that action. We call this structure a planning graph. Figure 2.3

illustrates the general structure of a planning graph.

…

…

…

…

0 i – 1 i i + 1

…

…

…

…

…
…

Figure 2.3 – Planning graph general structure

14

With the planning properly graph set up, Graphplan then starts the search pro-

cess. The planner performs a backward-chaining level-by-level strategy. First, it starts by

analyzing the last level of the graph (for convenience, we call the current level t), search-

ing for the goal state predicates. It then goes to level t − 1, searching for the actions that

have those predicates as add-effects. Once it finds those actions, it takes the precondi-

tions for these actions as sub-goals, and the recursive search process goes to the level

prior to that, treating it as level t now. The planner repeats this process until it reaches

the first graph level, then it derives a plan from the actions selected to fulfill the sub-goals

at each recursion. If an action fails to fulfill a sub-goal, Graphplan will try to select another

one until that sub-goal is fulfilled. If it comes to a point that some sub-goal from level t
could not be fulfilled by any actions in level t − 1, the planner returns a failure, as the goal

is not achievable.

There is also a relaxation of the planning graph structure where the delete-list

of effects is ignored in the relation between the facts and actions. We call this relaxed

structured a relaxed planning graph (RPG). Graphplan brought major improvements to the

planning process that are still referenced in recent works, such as the ability to represent

mutual exclusion between actions, the possibility of having parallel actions when they are

not mutually exclusive, memoization capabilities obtained by having the actions fixed at

their respective time steps, and not reducing instantiations at search time, as the planner

generates the entire graph before the search process begins.

Other automated planning approaches leverage on heuristic search, such as the

Heuristic Search Planner (HSP) [5] and the Fast-Forward planning system (FF) [20]. Both

use heuristic search based on a delete-free relaxation of planning problems, where one

ignores the delete-list of effects.

HSP was one of the planners in the AIPS 98 planning competition [32], and it

showed that heuristic-based planners can be competitive against the existing Graph-

plan [4] and SAT planners such as BLACKBOX [24]. The work that introduced HSP [5]

presents three variations of HSP. The first one is a hill-climbing planner with additive

heuristic that, even though showed to be competitive against the other planners in the

competition, was not optimal nor complete. To solve the completeness issue, they pre-

sented a variation called HSP2, that uses best-first search instead of hill-climbing, and it

not only showed to be better at solving the planning problems, but also obtained a bet-

ter time performance than the hill-climbing version. Finally, they present a third version,

called HSPr, which does a backward search instead of the forward one performed by the

first two variants, performing a regression from the goal state. They discuss that this pre-

vents the full heuristic recomputation at every single state, resulting in a much better time

performance.

The influence of HSP in the field derived the Fast-Forward planning system (FF)

[20]. FF is widely based on HSP, but has a major increase in performance, being the best

15

planner in the AIPS 2000 planning competition [3]. The main differences from HSP are

the heuristic, that takes into account positive interactions between facts, using enforced

hill-climbing instead of hill-climbing for a search method, and pruning action nodes based

on identifying the ones that are more helpful on reaching the goal.

These planners kept deriving more high-achieving planners, such as the Fast-

Downward planning system (FD) [19] and the LAMA planner [45]. FD is also a forward

search heuristic planner, but it translates the planning task into what the call a multivalued

planning task, and solve it by hierarchically decomposing the task to compute the heuristic

function. The Fast-Downward planning system was the best performing planner in the

classical track of the 4th International Planning Competition at ICAPS 2004. A few years

later, the LAMA planner appeared, based on the FD planning system, but using the FF

heuristic combined with a heuristic based on planning landmarks, i.e. necessary facts or

actions that must be achieved or executed to achieve a given goal. LAMA was the best

performing planner in IPC 2008’s sequential satisfying track.

16

3. PLANNING AS SATISFIABILITY

One of the approaches to solving a planning problem is converting it into a SAT

instance. For this, one must properly encode the planning problem into a SAT problem,

which allows solving the planning problem with a regular SAT solver. In this Chapter, we

go over the theoretical background involving the Boolean Satisfiability Problem (SAT) and

some solving techniques, in Section 3.1, different encodings for planning as satisfiability,

in Section 3.2, different approaches in SAT solving for planning, in Section 3.3, and some

planners based on SAT, in Section 3.4.

3.1 Boolean Satisfiability Problem (SAT)

The Boolean Satisfiability Problem (SAT) is the problem of checking whether a

given boolean formula is satisfiable or not. In other words, we need to check if there exists

a model, i.e.a truth-value assignment for each variable in the formula, that makes that

formula true. An example is the formula below:

(p ∨ q̄ ∨ r) ∧ (p̄ ∨ q̄ ∨ r̄) ∧ (p̄ ∨ q ∨ r̄)

The formula above is satisfiable, and a valid model for it is {p = False, q =
False, r = True}. By contrast, the formula below is an example of an unsatisfiable for-

mula, as no model exists that makes the formula true:

(p ∨ q) ∧ (p ∨ q̄) ∧ (p̄ ∨ q) ∧ (p̄ ∨ q̄)

This is probably the most widely studied problem in computational logic, as it was

the first problem to be proven NP-complete, through the Cook-Levin theorem [8, 31]. This

not only means that SAT is in NP time complexity class, i.e. it can be solved in polynomial

time by a non-deterministic Turing Machine, but also means that any problem in NP can be

reduced in polynomial time to a SAT problem. This is extremely useful, as we don’t need

to know how to solve every problem in NP. We can just convert it to a SAT problem and

solve it with a standard SAT solver.

One of the first procedures to be used in SAT solving is the Davis-Putnam proce-

dure [10, 9], or DPLL, named after the initials of its creators. It takes a boolean formula

as input and outputs a boolean value that represents whether the formula is satisfiable

or not, and the found model that satisfies the formula, in case it is satisfiable. Some im-

plementations only return the boolean value, but we assume implementations that also

return the model, as the algorithm is capable of doing so. The algorithm works as a re-

17

cursion over the formula. It starts by propagating all the unit clauses, i.e. it selects the

variables that appear alone in clauses and assigns truth-values to them to satisfy those

clauses. This is called the unit propagation step. It also removes from the formula all

the clauses that were satisfied by this assignment. Finally, it selects a variable to assign

a truth-value to, and applies that value to the formula. It recursively tries to assign the

value “true”, and then “false”. The variable selection depends on the implementation,

and can be as simple as a random selection, or have a more clever procedure such as se-

lecting the variable with most occurrences among the clauses. On the next recursion, the

unit propagation step will remove this newly added unit clause with the chosen variable,

and every clause satisfied by it. If all variables in a clause are assigned, but the clause

is not yet satisfied, the clause is called an empty clause, still remaining in the formula.

Conversely, when a clause is satisfied, it is removed from the formula. Each recursion, the

algorithm checks if the formula is empty, what makes it trivially satisfied, and also checks

for the presence of any empty, i.e. unsatisfiable, clauses. If there is an empty clause, the

formula is not satisfied with that model, and it backtracks to the last recursion to choose

a different variable assignment.

Although the DPLL procedure is still widely used, the current state-of-the-art pro-

cedure for SAT solving is an algorithm commonly called Conflict-Driven Clause Learning

(CDCL), originally developed in [34, 35], under the name GRASP. The CDCL algorithm uses

DPLL as a base, but adds major improvements to it. For example, it adds clause conflict

learning, as it can learn exactly which truth-value attribution caused the conflict that led

to the formula being unsatisfiable with that model. Furthermore, it adds non-chronological

backtracking. The DPLL procedure can only backtrack to the previous recursion level each

time, which may lead to the algorithm still exploring paths that will lead to unsatisfiability.

The clause learning performed by CDCL allows it to backtrack directly to the assignment

that led to the conflict. Other improvements may vary depending on the implementation,

such as analyzing isolated clauses separately, in parallel, and using heuristics to make a

better choice on the variable to assign next.

As a heuristic example, we take the one used in Madagascar SAT planner [47] to

improve SAT solving performance: the Variable State Independent Decaying Sum (VSIDS)

heuristic, first implemented as a part of the Chaff SAT solver [38]. VSIDS is a heuristic to

improve literal choice in the current recursion of the CDCL algorithm. It works by com-

puting a score for each variable, then CDCL chooses the one with the highest heuristic

score. The initial score is the number of literal occurrences of the variable. Then, for each

new conflict clause found, the score is incremented for all the variables that belong to the

clause. The score is periodically divided by a constant.

There are also variants of the SAT problem. For instance, there is the MAX-SAT

problem, an optimization variation of SAT, where we want to find a model to maximize

the number of satisfied clauses. We can even weight the clauses differently, creating a

18

Weighted MAX-SAT problem. Moreover, we can generalize the SAT problem even further

as a Satisfiability Modulo Theory (SMT) problem. An SMT is a satisfiability problem that

allows descriptions using logical quantifiers, arithmetic operations, data structures such

as arrays, lists, among others. Both DPLL and CDCL work as SMT solvers besides their

original SAT origin. MAX-SAT also has its own generalization, called Optimization Modulo

Theory (OMT).

3.2 Problem Encodings

In a work from 1992 [23], Henry Kautz and Bart Selman introduce the concept of

planning as SAT, and develop a way to convert a planning problem into a SAT problem, by

representing it as a set of axioms. The axioms determine the properties of the planning

domain and instance, such as the property that, if the preconditions of an action hold,

then the action achieves its effects, describe which propositions a given action does not

affect when executed, and rule out anomalous models, such as the possibility of an action

executing despite its preconditions being false, as well as axioms to guarantee that one,

and only one, action occurs at a time. This initial problem encoding is referenced in future

work as a linear encoding.

A later work by Kautz and Selman [26], published in 1996, discusses over three

possible encodings for planning as satisfiability. Besides revisiting their linear encod-

ing [23], they describe two additional problem encodings: one based upon GraphPlan [4]

and a third state-based problem encoding. They describe the GraphPlan encoding as a

direct conversion of a planning graph as defined in [4] into a boolean formula, as they can

fully represent the graph through axioms that guarantee that:

• The initial state holds at layer 1, and the goals hold at the highest level;

• Each fact at level i implies the disjunction of all the operators at level i − 1 that have

it as an add-effect;

• Operators imply their preconditions;

• Conflicting actions are mutually exclusive.

The advantage of this encoding is that it allows partially ordered plans, as the

subgraph that serves as a solution to a planning is only partially-ordered, where the ac-

tions at a given level can be executed at any order given they are non-conflicting. This

encoding is, however, less expressive than the linear encoding.

Finally, they [26] describe a third encoding called a state-based encoding. This

encoding takes advantages from both previous encodings, being able to represent partially-

ordered plans, as well as having a greater expressiveness if compared to the GraphPlan

19

encoding. The core of this encoding is defining axioms to ensure that each state is valid

within itself, and axioms that represent the state transitions by expressing the possible

actions that could account for the change i.e.the effects imply the action. Basically, the

axioms define that, if a fluent changed its value between two time steps, then it means

that an action that has this fluent in its effects (add or delete) must have been executed

at that time step.

In this encoding the axioms that represent the planning instance can be classified

into five groups of formulas, each representing a group of definitions and constraints. We

consider the plan steps for this encodings, where, for a n-step plan, step 0 is the step

before executing the first action, while step n is the step after executing the final action.

We encode the initial state in a way that guarantees that every fact that belongs to that

state holds at step 0 and every other fact does not.

∧
f∈s0

f0 ∧
∧
f /∈s0

¬f0

We describe the goal state by the conjunction of all fluents (facts) that must hold

at time step n. This states that all facts from the goal state must belong to the state one

achieves by executing the final action in the plan.

∧
f∈g

fn

We state the fact that an action must be applicable in the current state if we

want to execute it, i.e. its preconditions must hold at the current time step. We also state

that the action’s effects hold at the next time step, meaning that we modified the state

by executing the action. In other words, any given action implies its preconditions and

effects.

ai =⇒

 ∧
p∈pre(a)

pi ∧
∧

e∈eff +(a)

ei+1 ∧
∧

e∈eff−(a)

¬ei+1

The axioms must also guarantee that an action only changes the facts that are in

its effects. This means that an action can only modify what its definition describes. These

are called explanatory frame axioms.

¬fi ∧ fi+1 =⇒

 ∨
a∈A|fi∈eff +(a)

ai

 ∧

fi ∧ ¬fi+1 =⇒

 ∨
a∈A|fi∈eff−(a)

ai

20

Finally, we guarantee that only one action occurs at each time step, for each and

every a, b ∈ A. This is called a complete exclusion axiom. This axiom can be modified to

only prevent the parallel execution of actions that are mutually exclusive, i.e. actions that

have conflicting preconditions and/or effects.

¬ai ∨ ¬bi

This kind of formulation assumes a planning problem with a bounded horizon.

This means that each set of formulas is meant to find a valid plan with a length (or horizon)

n that reaches the goal state. This horizon is iteratively incremented until a valid model is

found for the formula.

To illustrate the way the formulas above work, let’s take the following example of

an planning instance where a robot must move between different locations:

• Predicates:

– at(R, L), where R is a robot and L is a location.

• Actions:

– move(R, L1, L2), where R is a robot, L1 is a location, and L2 is another location.

This action represents moving robot R from location L1 to location L2.

* Preconditions: at(R, L1). Robot R must be at location L1.

* Effects: not(at(R, L1)), at(R, L2). Robot R is no longer at location L1 and is

now at location L2.

• Objects:

– r1 − robot

– l1, l2 − locations

• Initial state: at(r1, l1). Robot r starts at location l1.

• Goal state: at(r1, l2). We want robot r1 to be at location l2.

If we encode this example with the axioms presented above, with a planning

horizon of 1, we get the following axioms:

• Initial state: at(r1, l1, 0) ∧ ¬at(r1, l2, 0)

• Goal state: at(r1, l2, 1) ∧ ¬at(r1, l1, 1)

• Actions:

21

– move(r1, l1, l2, 0) ⇒ at(r1, l1, 0) ∧ at(r1, l2, 1) ∧ ¬at(r1, l1, 1)

– move(r1, l2, l1, 0) ⇒ at(r1, l2, 0) ∧ at(r1, l1, 1) ∧ ¬at(r1, l2, 1)

• Explanatory frame axioms:

– ¬at(r1, l1, 0) ∧ at(r1, l1, 1) ⇒ move(r1, l2, l1, 0)

– ¬at(r1, l2, 0) ∧ at(r1, l2, 1) ⇒ move(r1, l1, l2, 0)

– at(r1, l1, 0) ∧ ¬at(r1, l1, 1) ⇒ move(r1, l1, l2, 0)

– at(r1, l2, 0) ∧ ¬at(r1, l2, 1) ⇒ move(r1, l2, l1, 0)

• Complete exclusion axiom: ¬move(r1, l1, l2, 0) ∨ ¬move(r1, l2, l1, 0)

The resulting final formula is a conjunction of all the axioms defined above. Once

the SAT solver finds a model for the formula with the given horizon, we then need to

extract the plan from the model. We know that, in a scenario with no parallel actions, for

each time step i from 1 to n, there will be only one ground action fluent with a truth-value

of true. That fluent represents the i − th action of the plan.

To address the issue of the resulting large problem encodings, which tends to in-

crease the solving time, the authors [26] discuss that a way to mitigate that issue is to re-

duce the predicate arity, so if there is, for instance, a quaternary predicate move(x,y,z,i)
that represents that an object x moves from y to z at time i, we can instead represent it

as 3 binary predicates object(x,i), source(y,i), and dest(z,i), which reduces the size

of the encoding. Having the encoding defined, they generate SAT instances for bounded

increasing planning horizons until a solution is found. The boolean formula is then formed

from all the axioms and can be solved with a regular SAT solver, where any found model

that satisfies the formula is a valid plan.

In a later work by Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler, pub-

lished in 1997 [12], the authors develop a new encoding that relaxes the representation

even more. In this encoding, they take plan parallelism even further, allowing parallel ac-

tions given that the actions can be laid in some order where they do not conflict with each

order, i.e. there is, at least, one valid ordering for the actions. This differs from GraphPlan

parallelism in [26], where every possible ordering of the actions needs to be valid. There

is a further relaxation of this technique, described in [54], where a group of actions does

not need to have all of its preconditions satisfied to be applied in parallel, given that the

actions can satisfy themselves using each other’s effects in some ordering.

3.3 SAT Solving for Planning as SAT

The work by Kautz and Selman [23, 26] uses a SAT solving approach that solves

SAT-encoded planning problems sequentially, one at a time, for bounded increasing hori-

22

zon lengths (1, 2, 3, 4, 5, ...). Work by Rintanen et al. [48] introduces two parallel algo-

rithms, which we call algorithms A and B. Algorithm A simultaneously solves SAT instances

for bounded horizons of size 1 through n. If it finds that the formula is satisfiable, it returns

the plan, and the algorithm terminates. Otherwise, it starts a solver for the shortest plan

length not searched yet, always solving n SAT instances in parallel. Algorithm B also runs

a predefined number of SAT solvers in parallel, but the CPU time it assigns to solver with

horizon t is the multiplication of the time assigned to the instance with horizon t − 1 and a

constant g < 1, decreasing the CPU time as the horizon grows. It also restricts the number

of parallel SAT solvers depending on memory availability.

Since some approaches use the CDCL algorithm for SAT solving [54, 47], there

is research on planning-specific heuristics to replace standard heuristics, such as VSIDS.

A recent one is the Variable Selection to Satisfy Goals and Subgoals heuristic [46]. This

heuristic is based on the principle that each goal literal has to be made true by an action,

and that for that action to be executed, its preconditions must be made true by some

previous action, or be true at the initial state. It then performs a backwards search to find

the earliest time point where a goal literal becomes true and remains true to the end of

the plan. It then chooses the action that makes that literal true.

3.4 SAT-Based Planners

Kautz and Selman [23] developed the SATPLAN [23, 26, 22] system, evolving

it as they found better encodings. They further refined it, leveraging on the state-based

encoding [26]. Kautz and Selman also developed the BLACKBOX planner [24], which works

by creating a GraphPlan-style [4] planning graph with a bounded horizon, translating the

constraints into a set of clauses, solving it with a regular SAT solver and, if a solution is

found, translating the solution into a plan and pruning unnecessary actions. If a solution

is not found, it increases the horizon and tries again. This planner obtained great results

in the 1998 AIPS planning competition [32].

The current state-of-the-art SAT planner is Jussi Rintanen’s Madagascar plan-

ner [47]. This planner leverages on the parallel actions encoding described in [54] and

the GraphPlan binary mutexes. Furthermore, the authors describe more than one version

for the planner, with different configurations, which allows the user to experiment with dif-

ferent execution settings and use the most efficient one for their application. The versions

vary the horizon length the planner considers when searching for plans with bounded hori-

zons, as well as the heuristic to use with CDCL algorithm. The authors cite two heuristics

currently implemented in the planner: the VSIDS heuristic [38] and the Variable Selection

to Satisfy Goals and Subgoals heuristic [46].

23

4. MULTIAGENT PLANNING

The formalism we discussed so far assume there is either a single agent act-

ing in the environment, or at least a centralized decision-making agent generating plans.

However, in many cases, there is not only one agent, but a group of agents that must

cooperate to complete a given task. In that case, the planner must take that into account,

and find the most efficient set of actions for a group of agents to execute and reach the

common goal. This is called a multiagent planning (MAP) task. Figure 2.1 depicts an ex-

ample of a multiagent planning environment with two robot agents and multiple possible

goals, where we might want to derive a plan to direct our robots to one of the goals, where

they shall cooperate to achieve it, or direct each robot to a different goal. In this Chapter,

we summarize background for multiagent planning, defining the formalism and notation in

Section 4.1, the language used to describe a multiagent planning problem, in Section 4.2,

and some frameworks and algorithms, in Section 4.3.

GOAL 1 GOAL 2

Figure 4.1 – Multiagent planning environment example

4.1 Formalism and Notation

For convenience, we use the definitions from [52]. To define a MAP task, we

use the MA-STRIPS definition [7], which extends the previously discussed STRIPS defini-

tion to multiagent tasks, as this is the main formalism adopted by the works in this field.

MAP shares most definitions with the standard STRIPS definition, such as the definition of

states, facts, and actions, as well as the definitions of preconditions, effects, and state

applicability for actions.

We define a MAP task as a tuple TMAP = ⟨Φ,Σ, {Ai}n
i=1, I, G⟩, where:

• Φ is a finite set of k agents;

• Σ is a finite set of facts;

24

• Ai is the finite set of actions for agent i . We define the full set of actions for TMAP as

A, where A = ∪∀i∈ΦAi ;

• I is the initial state;

• G is the common goal state.

The solution for a MAP task is an ordered sequence of actions, i.e.a plan, that,

when applied to initial state I, generates a state that contains the goal state G. In

the standard MA-STRIPS definition, a solution plan must be a totally-ordered set of ac-

tions [7], while other works describe a plan as a set of action sequences (one sequence

per agent) [30] or as a partially-ordered sequences of actions [53].

We can divide the facts Σ in a MAP task into public and private facts. Private facts

are internal to a given agent i ∈ Φ, and can only be used and affected by actions in Ai .

Public facts are accessible to all agents. We denote agent’s i private (internal) facts as

Σi
int and the public facts as Σpub. We distribute the task to the agents in Φ as a set of local

views, where each agent has its own local view of the task. The local view for agent i of

the MAP task T is denoted as a 4-tuple Ti = ⟨Σi ,Ai , I i , G⟩, where:

• Σi = Σi
int ∪ Σpub is the set of facts accessible to agent i;

• Ai are the available actions for i;

• I i ∈ Σi is the set of facts belonging to the initial state I that are accessible to i;

• G is the common goal state. All facts in the common goal state are accessible to all

agents in Φ.

4.2 Problem Description Language

Just as single-agent planning has its standard language for defining domains and

tasks (PDDL), so does MAP. In MAP, the most widely used language for defining a task is

Multiagent PDDL (MA-PDDL) [28, 29]. MA-PDDL is very similar to standard PDDL, being

nothing but a multiagent extension to standard PDDL. We discuss the differences below.

In MA-PDDL, we can define tasks with both factored and unfactored privacy. Un-

factored privacy tasks have a domain definition file and a single task file that serves all

the agents. Factored tasks have a domain definition file and an individual task file for each

agent, representing the agent’s local view. This is done by adding the :factored-privacy
or :unfactored-privacy property to the requirements section. Listing 4.1 depicts an ex-

ample of a domain definition in a factored definition [52].

25

This example represents the Transport Agent domain. In this domain, there are

transport agencies that work in different geographical areas and transport packages from

locations within their areas. Additionally, there is also a factory that resides in the intersec-

tion of the agencies area and needs raw material to manufacture a product. The transport

agencies must transport the packages of raw material from their current location to the

factory, so that the factory can use it to manufacture the final product. A transport agency

can only transport a package to the factory if the initial package location resides within its

area.

As we can see, the domain definition is fairly similar to a single-agent PDDL do-

main file. The main difference we see is in the :factored-privacy key word, which we

have already discussed, and the :private key word within the :predicates section. The

:private key word states that the predicates within that scope will not be shared across

the agents, meaning that each transport agency will not disclose any information neither

about the topology of their work area nor about their trucks.

1 (define (domain transport-agency)
2 (:requirements
3 :factored-privacy
4 :typing
5 :equality
6 :fluents
7)
8 (:types
9 transport-agency

10 area
11 location
12 package
13 product - object
14 truck
15 place - location
16 factory - place
17)
18 (:predicates
19 (manufactured ?p - product)
20 (at ?p - package ?l - location)
21 (:private
22 (area ?ag - transport-agency ?a - area)
23 (in-area ?p - place ?a - area)
24 (owner ?a - transport-agency ?t - truck)
25 (pos ?t - truck ?l - location)
26 (link ?p1 - place ?p2 - place)
27)
28)
29 (:action drive
30 :parameters (?ag - transport-agency ?a - area ?t - truck ?p1 - place

?p2 - place)

26

31 :precondition (and
32 (area ?ag ?a)
33 (in-area ?p1 ?a)
34 (in-area ?p2 ?a)
35 (owner ?a ?t)
36 (pos ?t ?p1)
37 (link ?p1 ?p2)
38)
39 :effect (and
40 (not (pos ?t ?p1))
41 (pos ?t ?p2)
42)
43)
44 [...]
45)

Listing 4.1 – Excerpt from Transport Agency domain described in MA-PDDL

Having the domain defined, we can define the task itself. In this example, since it

is a factored definition, we have a task file for each agent. Listing 4.2 shows the MA-PDDL

task file for agent 1. Firstly, we see that it is not so different from a single-agent problem

definition. Secondly, we see that only facts regarding the transport agency 1 are described

in the initial state, as the ones regarding any other transport agencies are private to those

agencies. Finally, we see that the goal is to have the final product manufactured, as the

agencies must work together to make sure that the factory has the necessary raw material

to do so. We assume that the factory is another agent and that it will manufacture the

product if the transport agencies provide the raw material.

1 (define (problem ta1)
2 (:domain transport-agency)
3 (:objects
4 ta1 - transport-agency
5 ga1 - area
6 l1 l2 sf - place
7 p - package
8 fp - product
9)

10 (:init
11 (area ta1 ga1)
12 (pos t1 l1)
13 (owner t1 ta1)
14 (at p l1)
15 (link l1 l2)
16 (link l2 l1)
17 (link l1 sf)
18 (link sf l1)
19 (link l2 sf)

27

20 (link sf l2)
21 (in-area l1 ga1)
22 (in-area l2 ga1)
23 (in-area sf ga1)
24)
25 (:goal (manufactured fp))
26)

Listing 4.2 – Excerpt from Transport Agency domain described in MA-PDDL

4.3 Frameworks and Algorithms

Since this survey is related to SAT-based techniques, an important planner to

mention is µ-SATPLAN [11], which first distributes the goals among the agents and then

iteratively feeds each agent with the solution of the previous agent as input. Each agent

solves the task using the regular SATPLAN [22] planner, and the agents progressively

solve the entire task. Still, this work does not bring anything new into the SAT planning

field itself, as it just breaks the task down into single-agent ones and then uses the regular

single-agent SATPLAN planner to solve them.

As we see from the approach above, as well as from other approaches, it is com-

mon in multiagent planning to just translate a problem into a single-agent one, or to break

it down into multiple single-agent ones, to leverage from common single-agent planners.

Some examples of such approaches are Multi-Agent Planner by Plan Reuse (MAPR) [6],

Plan Merge by Reuse (PMR) [33], and Centralized Multi-Agent Planning (CMAP) [13]. MAPR

has a similar approach to µ-SATPLAN, where it distributes the goals to the agents and

each agent receives as input, the output of the previous agent. The difference is that

each agent uses the LAMA [45] planner to solve its task. PMR also uses the LAMA planner

in as similar way as MAPR, but instead of making the agents solve the task sequentially,

it parallelizes the agents, making each of them generate a plan for the distributed goals,

and then merges the plan in post-processing. Finally, CMAP also uses LAMA, but it com-

pletely translates the MAP task into a standard single-agent planning task, and then uses

LAMA to solve it.

28

5. GOAL RECOGNITION

Goal recognition is the task of correctly identifying an agent’s goal by observing

its interactions with the surrounding environment [51]. Such observations may translate

into actions performed by the agent or properties of the environment during the agent’s

actions. We define a goal recognition problem over planning domain theory in the same

manner as [43, 44] defined a plan recognition problem. Figure 5.1 illustrates an example

of a goal recognition environment. In this example, we observe the agent’s movements,

depicted in blue, and since we can see that the agent is moving towards the wrench, we

could infer that the wrench is the agent’s goal. In this Chapter, we outline the formalism

and notation, in Section 5.1, and discuss some frameworks for solving goal recognition

problems, in Section 5.2

GOAL 1 GOAL 2

Figure 5.1 – Goal recognition environment example

5.1 Formalism and Notation

Goal recognition is often mentioned as plan recognition, a variant where one de-

sires to not only recognize the agent’s goal, but also the plan this agent is executing to

achieve it and that explains the observations. The earlier approaches to plan recogni-

tion [25, 18] were based on plan libraries, where the recognizer would assume that the

agent was following a plan taken from a previously defined plan library. The algorithms

were dependent of this plan library, and the frameworks would generate the plans before

the recognition process started. The recognizer would then try to find which plan from

the library explained the observations. This was the common approach until a paper by

Ramirez and Geffner [43] was published, where the authors interpreted a plan recogni-

tion problem as a problem over a domain theory, or a planning domain theory, using the

formalism and techniques of automated planning as a base to formulate and solve plan

recognition problems. Their work paved the way to many other works, and shaped the

29

state-of-the-art of how we tackle plan and goal recognition problems. For this reason,

this is the kind of approach we focus on this survey. Analogously, the majority of goal

and plan recognition solutions that are based on planning domain theory use the PDDL

language [36] as a base to define the problems.

A goal recognition problem over domain theory can be defined as a tuple TGR =
⟨Ξ, I,G, O⟩, in which Ξ = ⟨Σ,A⟩ is a planning domain definition; I is the initial state; G is

the set of goal state hypotheses, which includes the correct intended goal state G∗ (i.e.,

G∗ ∈ G); and O = ⟨o1, o2, ..., on⟩ is an observation sequence of executed actions, where

each observation oi ∈ A.

The solution to a goal recognition problem is the hidden goal G∗ achieved by the

sequence of observations O. We can have either full or partial observations, meaning that

we may be observing all the actions performed by the agent or only a subset (contiguous

or not) of such actions. Furthermore, observations may contain noise within them, mean-

ing that the observation set may include fake or spurious actions, that were not actually

performed by the agent. In real-world applications, faulty sensors may cause noise in

observations, for instance.

5.2 Frameworks and Algorithms

When we deal with single-agent goal recognition, we see no relevant work on

SAT-based approaches. Given that, we will focus this Section on discussing other relevant

goal recognition frameworks. We do not focus on approaches based on plan libraries, as

they have been largely surpassed by the ones based on planning domain theory.

In [43], the authors develop the formalism to treat a goal recognition problem

as a problem over domain theory, instead of using a previously generated plan library

and looking for a plan included in the library, which can be costly and unfeasible in many

applications. In one of the introduced approaches, the authors use a planner to obtain

the cost to each goal, using that cost as a maximum when reusing the planner with the

observations added to the goal state, checking if there is an optimal plan that can reach

the goal through the observations. As mentioned before, this work is one of the most

relevant works in the field, as it changed the way we see plan recognition problems.

Later work by the authors [44] introduces a way to discover the real goal by

calculating a probability distribution over the set of goal hypotheses. In this later work,

the authors compute the probability of each goal hypothesis given the observations. To do

that, they use a Bayesian model, and use the cost difference between plans that follow the

observations versus plans that deviate from the observations. To generate those plans,

they use off-the-shelf classical planners, such as HSP [5] and LAMA [45].

30

A more recent approach [42] is based on landmark analysis. In this work, the au-

thors develop two heuristics to analyze the landmarks for each goal hypothesis, and com-

pare the achieved landmarks to the total landmarks for each of them. The first heuristic

computes the ratio between achieved and total landmarks to provide a score for each goal

hypothesis. The second heuristic computes the same ratio, but assigns a higher value to

landmarks that are landmarks to fewer goal hypotheses, since achieved landmarks that

are not shared across different goals provide more information on the agent’s intention.

31

6. MULTIAGENT GOAL RECOGNITION

In Chapter 4 we discussed over another prism of planning problems where one

might want to plan for multiple agents to cooperate as a team in pursuit of a given goal.

Conversely, we also have interest in identifying when multiple agents are cooperating as a

team, and what goal they are pursuing. This derives a subgroup of goal recognition called

multiagent goal recognition (MAGR).

Figure 6.1 illustrates an example of a multiagent goal recognition environment.

In this example, we observe the both agents’ movements, depicted in blue and green.

Since we can see that the blue agent is moving towards the wrench, while the green one

is moving towards the battery, we could infer that each agent is it’s own team, and that

the wrench is the blue agent’s goal, while the battery is the green agent’s goal. In this

Chapter, we describe the formalism and notation for MAGR in Section 6.1, as well as some

algorithms and techniques, in Section 6.2.

GOAL 1 GOAL 2

Figure 6.1 – Multiagent goal recognition environment example

6.1 Formalism and Notation

To define a MAGR problem, we extended the definition of a single-agent goal

recognition problem. The main difference is that we have a set of agents, instead of a

single one. This alone adds another variable to the problem, as we have to analyze which

actions were executed by which agent. Additionally, the agents may cooperate on teams,

where each team is pursuing a different goal. Our objective is to find out how are these

teams organized, i.e. how many teams are there, who (which agents) are the members of

each team, and which goal each team is pursuing. We call this a team-goal mapping.

The different works in MAGR diverge in how they define a task. They sure have

a common ground, such as defining the actions, with names, preconditions and effects,

defining the possible facts and the initial state, defining the list of agents involved in the

32

process, and defining the observations, or team traces. What the MAGR papers we discuss

here mostly differ is in how they treat the possible goals being pursued. For instance, the

work by Zhuo et al. [55, 56, 57] clearly define a set of goal hypotheses for the framework

to analyze, while in the work by Argenta and Doyle [1, 2], the authors define the set

of hypotheses as the set of all possible goals, not defining a finite set specifically. For

convenience, we will define a MAGR task as close as to the definition we gave to a single-

agent one, with the appropriate adaptations taken from the papers we discuss here.

We define a MAGR task as a tuple TMAGR = ⟨Ξ,Φ, I,G,O⟩, where Ξ is the domain

definition, with the possible facts and actions; Φ = ϕk
i=1 is the set of agents, where k > 0

and where each agent is a part of one, and only one team, where a team is a group of one

or more agents; I is the initial state; G, where |G| = l , is the set of goal hypotheses, where

l ≥ k , meaning there is the possibility that each agent is its own team pursuing its own

goal. Each goal hypothesis might or might not be a correct intended goal for one of the

teams, and every correct intended goal for each of the teams is included in this list. We

denote the hidden subset of correct intended team goals as G∗; O = {Oi}k
i=1 are the team

traces, which are a list of observed actions mapped to the agent who executed them. The

solution to a MAGR task is the correct identification of the teams, i.e. how many teams

are there and who are the members in each team, and the correct intended goal for each

team.

6.2 Frameworks and Algorithms

In this Section, we discuss relevant works in the field of multiagent goal and plan

recognition. We divide this Section into the different kind of approaches. In Section 6.2.1,

we discuss a classic "plan recognition as planning" approach based on the work by Ramirez

and Geffner [43]. In Section 6.2.2, we discuss probabilistic approaches for multiagent goal

and plan recognition. Finally, in Section 6.2.3, we discuss SAT-based approaches for goal

and plan recognition, as it is the focus of this survey.

6.2.1 A Classical "Plan Recognition as Planning" Approach

In a 2016 work by Argenta and Doyle [1], the authors develop a framework

called Multiagent Plan Recognition as Planning (MAPRAP) inspired by the one developed

by Ramirez and Geffner [43], using a planner to compute the cost to achieve each goal

and then comparing that cost to the cost of a plan that incorporates the observations. If

the plan cost increases with the observations, then the observations do not explain that

goal, and hence that is not the correct intended one. They describe two approaches,

33

MAPRAPA and MAPRAPB. MAPRAPA maps all possible teams to all possible goals to

the hypotheses and tests the cost for each one of them, removing when the observations

increase the cost. MAPRAPB, on the other hand, starts with a single team, containing

all agents, for each goal, and prunes the agents from the composition when their actions

increase the cost. This makes so that MAPRAPB reduces the number of runs per goal as

the agent/team ratio increases.

6.2.2 Probabilistic Approaches

Following the work above, the same authors extend the MAPRAP framework in a

probabilistic way to not only return the goals and plans identified as the possible correct

intended ones, but to rank them using a likelihood score [2]. They call this new framework

Probabilistic Multiagent Plan Recognition as Planning (P-MAPRAP). They do this by com-

puting a likelihood score for each possible interpretation (an interpretation maps every

agent to a team and every team to a goal) and storing them in a priority queue based on

said score. Before reading the first observable, they compute a baseline score for each

interpretation in the list without considering observations. They iterate over the list of ob-

servables computing the cost with the observations, just like MAPRAP. They compute the

likelihood score using the cost difference, and store the interpretations back in the priority

queue, repositioning inside the queue according to the score. If the new top interpretation

does not include the current observations, they remove it from the queue and repeat the

process until it does. This guarantees that the framework only considers the most likely

interpretations.

In a different work [49], the authors propose three probabilistic approaches to

multiagent plan recognition problems. In this work, they transform the goal recognition

problems into temporal planning problems, i.e. problems where each action has a de-

fined temporal duration in the environment. The first approach is based on Ramirez and

Geffner’s probabilistic plan recognition work [44], using the cost difference between a plan

with and without the observations as a proxy to compute the probability of the observa-

tions given each goal, and then using this probability to compute the probability of each

goal hypothesis being the correct one given the observations.

The second approach differs from the first by not using this cost difference to

compute the probabilities, and by using a diverse planner, as in [50]. In a diverse planning

problem, the objective is to obtain a set of m plans that are, at least, at a distance of d
away from each other [50]. In this approach, the authors compute the probability of each

plan generated by the diverse planner being the followed one given the observations,

and use this probability as a proxy to compute the probability of each goal hypothesis

being the correct intended one given the observations. One interesting feature to note is

34

that during the probability computation, they add penalties for unexplained and missing

observations in the plans. The third and final approach, the one that achieved the best

results, is a hybrid one between the first two, where they use a diverse planner, but merge

the generated plans.

6.2.3 SAT-Based Approaches

The work by Zhuo et al. [55, 56, 57] is one of the greatest references in the field.

The reason it correlates to our survey is the fact that all of these approaches work by

building a set of constraints from the planning problem and solve them using a weighted

MAX-SAT solver. The main difference between them is that [55] uses team plan libraries

as inputs, and [57] works with incomplete team traces and action-models, which would

be analogous to working with incomplete domain models [41]. Since we are focusing on

goal recognition over a domain theory instead of plan libraries, and we are not focusing

on goal recognition with incomplete domain models, we focus on discussing [56].

In [56], the authors develop a framework that, given a partially-observed team

trace, a set of action models (defined as STRIPS actions), an initial state, and a set of goal

hypotheses, outputs a set of team plans with the maximum likelihood to achieve some

goal among the hypotheses. They use what they call a likelihood function to compute the

likelihood of a set of team plans achieving a goal. The set of team plans must respect a

series of properties, which they ensure by building sets of constraints.

First, they build a set of candidate activities by instantiating the actions using the

observations and the initial and goal states. Then, they build a set of hard constraints to

ensure some conditions, that the set of team plans is a partition of the trace, covers all the

observed activities, and turns the initial state into a goal state. With the hard constraints

generated, they generate a set of soft constraints based on the likelihood function. Finally,

they group all the constraints and solve them using a MAX-SAT solver. They do that for

each goal hypothesis, and the framework considers the one with the highest result from

the MAX-SAT solver to be the correct intended one. The framework then converts the

found solution for the MAS-SAT problem into a plan and returned as well. The results are

promising, but the authors have limited the evaluation to simpler problem domains.

35

7. CONCLUSION

In this survey, we have reviewed the theoretical background, formalism, and no-

tations for both single-agent and multiagent planning and goal recognition. We have also

reviewed the theoretical background around the Boolean Satisfiability Problem (SAT) and

SAT-based techniques for planning. Finally, we have revisited relevant work on these ar-

eas, including the few SAT-based goal recognition ones.

We saw that while SAT is widely used in planning applications, it is not that widely

used in goal recognition applications. The lack of experimentation with SAT-based goal

recognition in more complex domains, while we see that kind of experimentation with

other techniques, may be an indication that these SAT-based solutions would not scale

well in more complex settings, and so the majority of research effort has been directed to

other approaches. We still expect for more experimentation on SAT-based goal recognition

techniques, as there might be more to explore in this field that has not yet been explored.

36

REFERENCES

[1] Argenta, C.; Doyle, J. “Multi-agent plan recognition as planning (maprap)”. In:

Proceedings of the 8th International Conference on Agents and Artificial Intelligence,

2016, pp. 141–148.

[2] Argenta, C.; Doyle, J. “Probabilistic multi-agent plan recognition as planning (p-

maprap): Recognizing teams, goals, and plans from action sequences”, 2017, pp.

575–582.

[3] Bacchus, F. “Aips 2000 planning competition: The fifth international conference on

artificial intelligence planning and scheduling systems”, Ai Magazine, vol. 22, 2001,

pp. 47–56.

[4] Blum, A. L.; Furst, M. L. “Fast planning through planning graph analysis”, ARTIFICIAL

INTELLIGENCE, vol. 90, 1995, pp. 1636–1642.

[5] Bonet, B.; Geffner, H. “Hsp: Planning as heuristic search”, Planning Competition at

Artificial Intelligence Planning Systems 1998 (AIPS’98), 1998.

[6] Borrajo, D. “Multi-agent planning by plan reuse”. In: Proceedings of the 2013

international conference on Autonomous agents and multi-agent systems, 2013, pp.

1141–1142.

[7] Brafman, R.; Domshlak, C. “From one to many: Planning for loosely coupled multi-

agent systems”. In: Proceedings of the 18th International Conference on Automated

Planning and Scheduling, 2008.

[8] Cook, S. A. “The complexity of theorem-proving procedures”. In: Proceedings of the

Third Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[9] Davis, M.; Logemann, G.; Loveland, D. “A machine program for theorem-proving”,

Communications of the ACM, vol. 5, 1962, pp. 394–397.

[10] Davis, M.; Putnam, H. “A computing procedure for quantification theory”, J. ACM,

vol. 7–3, jul 1960, pp. 201–215.

[11] Dimopoulos, Y.; Hashmi, M. A.; Moraitis, P. “µ-satplan: Multi-agent planning

as satisfiability”, Knowledge-Based Systems, vol. 29, 2012, pp. 54–62, artificial

Intelligence 2010.

[12] Dimopoulos, Y.; Nebel, B.; Koehler, J. “Encoding planning problems in nonmonotonic

logic programs”. In: Proceedings of the Fourth European Conference on Planning,

1997, pp. 169–181.

37

[13] Fernández, S.; Borrajo, D. “Mapr and cmap”. In: Proceedings of the Competition of

Distributed and Multi-Agent Planners, 2015, pp. 1–3.

[14] Fikes, R. E.; Nilsson, N. J. “STRIPS: A new approach to the application of theorem

proving to problem solving”, Journal of Artificial Intelligence Research (JAIR), vol. 2–

3, 1971, pp. 189–208.

[15] Geib, C. W. “Problems with Intent Recognition for Elder Care”. In: Proceedings of the

Conference of the Association for the Advancement of Artificial Intelligence (AAAI),

2002, pp. 13–17.

[16] Geib, C. W.; Goldman, R. P. “Plan Recognition in Intrusion Detection Systems”. In:

DARPA Information Survivability Conference and Exposition (DISCEX), 2001.

[17] Ghallab, M.; Nau, D. S.; Traverso, P. “Automated Planning - Theory and Practice.”

Elsevier, 2004.

[18] Goldman, R. P.; Geib, C. W.; Miller, C. A. “A new model of plan recognition”. In:

Conference on Uncertainty in Artificial Intelligence, 1999.

[19] Helmert, M. “The fast downward planning system”, Journal of Artificial Intelligence

Research (JAIR), vol. 26–1, jul 2006, pp. 191–246.

[20] Hoffmann, J. “Ff: The fast-forward planning system”, AI Magazine, vol. 22–3,

Sep 2001, pp. 57.

[21] Karpas, E.; Magazzeni, D. “Automated planning for robotics”, Annual Review

of Control, Robotics, and Autonomous Systems, vol. 3–1, 2020, pp. 417–439,

https://doi.org/10.1146/annurev-control-082619-100135.

[22] Kautz, H. “Deconstructing planning as satisfiability.” In: Proceedings of The Twenty-

First National Conference on Artificial Intelligence, 2006.

[23] Kautz, H.; Selman, B. “Planning as satisfiability”. In: Proceedings of the Tenth

European Conference on Artificial Intelligence (ECAI’92), 1992, pp. 359–363.

[24] Kautz, H.; Selman, B. “Blackbox: A new approach to the application of theorem

proving to problem solving”, AIPS98 Workshop on Planning as Combinatorial Search,

06 1998.

[25] Kautz, H. A.; Allen, J. F. “Generalized plan recognition”. In: AAAI Conference on

Artificial Intelligence, 1986.

[26] Kautz, H. A.; Selman, B. “Pushing the envelope: Planning, propositional logic and

stochastic search”. In: AAAI/IAAI, Vol. 2, 1996.

38

[27] Kelly, J.-P.; Botea, A.; Koenig, S. “Offline planning with hierarchical task networks

in video games”, Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, vol. 4–1, Sep 2021, pp. 60–65.

[28] Komenda, A.; Štolba, M.; Kovács, D. “The international competition of distributed and

multiagent planners (codmap)”, AI Magazine, vol. 37, 10 2015, pp. 109–115.

[29] Kovacs, D. L. “Complete bnf definition of ma-pddl with privacy”. Source: http:

//agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf, 2015.

[30] Kvarnström, J. “Planning for loosely coupled agents using partial order forward-

chaining”, Proceedings of the International Conference on Automated Planning and

Scheduling, vol. 21–1, Mar 2011, pp. 138–145.

[31] Levin, L. A. “Universal sequential search problems”, Problems of Information

Transmission, vol. 9–3, 1973.

[32] Long, D.; Kautz, H.; Selman, B.; Bonet, B.; Geffner, H.; Koehler, J.; Brenner, M.;

Hoffmann, J.; Rittinger, F.; Anderson, C. R.; Weld, D. S.; Smith, D. E.; Fox, M.; Long, D.

“The aips-98 planning competition”, AI Magazine, vol. 21–2, Jun 1998.

[33] Luis, N.; Fernández, S.; Borrajo, D. “Plan merging by reuse for multi-agent planning”.

In: Proceedings of the 2nd ICAPS Workshop on Distributed and Multi-Agent Planning,

2014, pp. 38–44.

[34] Marques Silva, J.; Sakallah, K. “Grasp-a new search algorithm for satisfiability”. In:

Proceedings of International Conference on Computer Aided Design, 1996, pp. 220–

227.

[35] Marques-Silva, J.; Sakallah, K. “Grasp: a search algorithm for propositional

satisfiability”, IEEE Transactions on Computers, vol. 48–5, 1999, pp. 506–521.

[36] McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.; Weld,

D.; Wilkins, D. “PDDL − The Planning Domain Definition Language”, The Fourth

International Conference on Artificial Intelligence Planning Systems 1998 (AIPS’98),

1998.

[37] Mirsky, R.; Gal, Y. K.; Shieber, S. M. “CRADLE: An Online Plan Recognition Algorithm

for Exploratory Domains”, ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 8–3, 2017, pp. 45:1–45:22.

[38] Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; Malik, S. “Chaff: engineering an

efficient sat solver”. In: Proceedings of the 38th Design Automation Conference (IEEE

Cat. No.01CH37232), 2001, pp. 530–535.

http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf
http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf

39

[39] Oh, J.; Meneguzzi, F.; Sycara, K. “Probabilistic plan recognition for proactive assistant

agents”. In: Plan, Activity, and Intent Recognition: Theory and Practice, Sukthankar,

G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.; Bui, H. H. (Editors), Elsevier, 2014, pp.

275–288.

[40] Oh, J.; Meneguzzi, F.; Sycara, K.; Norman, T. J. “Prognostic normative reasoning”,

Engineering Applications of Artificial Intelligence, vol. 26–2, 2013, pp. 863 – 872.

[41] Pereira, R.; Meneguzzi, F. “Goal recognition in incomplete domain models”. In:

Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[42] Pereira, R. F.; Oren, N.; Meneguzzi, F. “Landmark-Based Heuristics for Goal

Recognition”. In: Proceedings of the Conference of the Association for the

Advancement of Artificial Intelligence (AAAI), 2017.

[43] Ramírez, M.; Geffner, H. “Plan Recognition as Planning”. In: Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), 2009.

[44] Ramírez, M.; Geffner, H. “Probabilistic Plan Recognition Using Off-the-Shelf Classical

Planners”. In: Proceedings of the Conference of the Association for the Advancement

of Artificial Intelligence (AAAI), 2010.

[45] Richter, S.; Westphal, M. “The lama planner: Guiding cost-based anytime planning

with landmarks”, Journal of Artificial Intelligence Research, vol. 39–1, sep 2010, pp.

127–177.

[46] Rintanen, J. “Heuristics for planning with sat”. In: Principles and Practice of Constraint

Programming – CP 2010, Cohen, D. (Editor), 2010, pp. 414–428.

[47] Rintanen, J. “Madagascar: Scalable planning with sat”, 2014.

[48] Rintanen, J.; Heljanko, K.; Niemelä, I. “Planning as satisfiability: parallel plans and

algorithms for plan search”, Artificial Intelligence, vol. 170–12, 2006, pp. 1031–1080.

[49] Shvo, M.; Sohrabi, S.; McIlraith, S. A. “An ai planning-based approach to the multi-

agent plan recognition problem (preliminary report)”. In: Proceedings of the The AAAI

2017 Workshop on Plan, Activity, and Intent Recognition (PAIR), 2017.

[50] Sohrabi, S.; Riabov, A. V.; Udrea, O. “Plan recognition as planning revisited”.

In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial

Intelligence, 2016, pp. 3258–3264.

[51] Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.; Bui, H. H. “Plan, Activity,

and Intent Recognition: Theory and Practice”. Elsevier, 2014.

40

[52] Torreño, A.; Onaindia, E.; Komenda, A.; Štolba, M. “Cooperative multi-agent planning:

A survey”, ACM Comput. Surv., vol. 50–6, nov 2017.

[53] Torreño, A.; Onaindia, E.; Sapena, O. “An approach to multi-agent planning with

incomplete information”, Frontiers in Artificial Intelligence and Applications, vol. 242,

aug 2012.

[54] Wehrle, M.; Rintanen, J. “Planning as satisfiability with relaxed e-step plans.” In:

AI 2007 : Advances in Artificial Intelligence: 20th Australian Joint Conference on

Artificial Intelligence, Surfers Paradise, Gold Coast, Australia, December 2-6, 2007,

Proceedings, 2007, pp. 244–253.

[55] Zhuo, H.; Li, L. “Multi-agent plan recognition with partial team traces and plan

libraries”. In: IJCAI, 2011.

[56] Zhuo, H.; Yang, Q.; Kambhampati, S. “Action-model based multi-agent plan

recognition”. In: Advances in Neural Information Processing Systems, Pereira, F.;

Burges, C.; Bottou, L.; Weinberger, K. (Editors), 2012.

[57] Zhuo, H. H. “Recognizing multi-agent plans when action models and team plans are

both incomplete”, ACM Trans. Intell. Syst. Technol., vol. 10–3, may 2019.

	Introduction
	Automated Planning
	Formalism and Notation
	Problem Description Languages
	Frameworks and Algorithms

	Planning as Satisfiability
	 Boolean Satisfiability Problem (SAT)
	Problem Encodings
	SAT Solving for Planning as SAT
	SAT-Based Planners

	Multiagent Planning
	Formalism and Notation
	Problem Description Language
	Frameworks and Algorithms

	Goal Recognition
	Formalism and Notation
	Frameworks and Algorithms

	Multiagent Goal Recognition
	Formalism and Notation
	Frameworks and Algorithms
	A Classical "Plan Recognition as Planning" Approach
	Probabilistic Approaches
	SAT-Based Approaches

	Conclusion
	References

