This document is intended to evolve into the final documentation for the ImageTool scripting language. It is released now for comments and suggestions (and to use). Eventually, we will be converting the last section into a help file for on-line use. If you have suggestions for the document in that form, they are welcome as well.

UTHSCSA
ImageTool
Version 2.0 (alpha 2)
September 1997

Script Language Reference Manual
(Manual revision 2)

TABLE OF CONTENTS

10.
Overview

1.
Getting Started
1
2.
Script Language Syntax
1
3.
Parts Of A Script File
2
A.
Var statements
2
B.
Macros
2
C.
Procedures and Functions
3
D.
Comments
3
E.
String Literals
4
4.
Variables
4
A.
Global variables
4
B.
Macro variables
4
C.
Procedure variables
4
D.
Built-in variables
5
5.
Variable Types
5
6.
LOGIC and LOOPs
6
A.
Conditional operation
6
B.
Conditional loops
6
C.
Incremental loop
6
7.
Interaction
7
A.
Getting input from the operator
7
B.
Displaying output
7
8.
Write and WriteLn
7
9.
Pid and Pic Numbers
8
10.
Results
8
11.
Settings
9
12.
Missing features/things you cannot do
9
13.
Known bugs
9
14.
Startup Scripts.
10
15.
Alphabetical List of Built-In Commands.
10
16.
Built-In Commands by Group
34
A.
Annotations
34
B.
Clipboard
35
C.
Color
35
D.
File Manipulation
35
E.
Image Analysis
35
F.
Image Creation
35
G.
Image Manipulation
36
H.
Image Math
36
I.
Image Processing
36
J.
Mathematical Functions
37
K.
Miscellaneous
37
L.
Object Set Manipulation
37
M.
Registry
38
N.
Regions of Interest (rois)
38
O.
Results Window
38
P.
Serial Port
38
Q.
Settings
38
R.
Stacks
39
S.
String Manipulation
39
T.
Text Window
39
U.
Thresholding
39
V.
User Interaction
39
W.
Window Manipulation
40

0.
Overview

ImageTool has always provided for extensibility using its open plug-in interface, although developing plug-ins required access to a compiler capable of generating Windows DLLs and someone with the expertise to write the necessary programs. With the release of version 2.0, we have extended ImageTool with a built-in scripting language that has most of the flexibility of a standalone programming language but leverages the capabilities of ImageTool. The result, we hope, is more than just a tool for automating repetitive tasks, but a useful means for extending ImageTool’s capabilities to meet the specific needs of researchers.

The scripting language is a subset of Pascal with a very large (> 200) collection of built-in commands to provide access to ImageTool’s image processing capabilities. Pascal was chosen so that the language would resemble the macro language built-in to the Mac-based NIH Image. So, while differences in NIH Image and ImageTool make it impossible for macros that have been written to run on one platform to work unchanged on the other, the similarities in the two languages should allow expertise gained on one to transfer to the other. In general, you should not assume that like-named commands behave exactly as they do in Image, although the behavior should be analogous.

1.
Getting Started

1.
Launch ImageTool
2.
Open an image file

3.
Open one of the sample scripts.

4.
Do a SaveAs giving the script file another name (to be on the safe side)

5.
Experiment - writing new macros etc. in the text window; running the script using the Run Current Text Window As Script command (Scripts menu). Note that the Run Current Text Window As Script command runs the first macro encountered in the script file.

2.
Script Language Syntax
{comment}
anything inside curly brackets is ignored is ignored by the macro language. N.B. Not terminating the brackets will result in errors such as the macro continuing into the next macro.

[n]
array indices. E.g. lineBuffer[1]

()
many uses including: conventional uses in mathematical and logical statement e.g. 25:=(7-2)*5; procedure calls e.g. procadd(a,b); function parameters e.g. GetPixel(x,y).

`..`
declares a string, used in various functions, e.g. Write(`string`).
;
ends a statement, omission will cause error messages, usually referring to the next line in the macro.

Enter
always optional, many statements can be included on one line, providing they are separated by semi-colons. Also blank lines can be left in macro files to improve readability.

,
separates variables - when declaring, in procedure calls, in function calls. E.g. GetPixel(x,y).

space
Usually optional between items, but cannot be introduced within items. Compulsory between string items e.g. SetOptions(`Area Mean`).

:
a few special uses.

:=
arithmetic assignment. The alternative, = is used in boolean logic statements. Thus a:=2+3; vs IF a=5 THEN...

case
ImageTool is not case sensitive, all identifiers (variable and command names etc.) can be written in upper or lower case, e.g. KILLROI or killroi or KillRoi (the last is preferred as more readable, and is the form that will be used throughout this manual).

In sample scripts shown in this file, built-in keywords will be shown in bold font, and built-in command names will be shown in blue.

3.
Parts Of A Script File
A.
Var statements

var statements are used to declare variables. There are two places in which a var declaration can appear: at the beginning of the script file and at the beginning of procedures, functions, and macros in the script file. Variables declared at the beginning of the script file, before any procedures, functions, or macros are global variables, and can be referenced by any statement in the script. Variables declared inside a procedure, function, or macro are local to that routine, and can only be referenced by statements in the routine (although they can be passed as parameters). You can add comments on the same line as the variable declaration as a means of documenting the purpose of variables. Since ImageTool does not have a limit on the length of variable names, using meaningful names can go a long way towards making your code more readable.

The following declares two variables, index is an integer, and name is a string:

var

index : integer;

name : string;

B.
Macros

A macro can be viewed as a discrete program called by the operator from within ImageTool. A single script file can contain multiple macros. If the script file is located in the ImageTool scripts directory, then each macro will be installed into the menu system. If the script file is opened in a text window, or selected using the Run Script… menu item, then only the first macro in the file will be visible.

Macros cannot be nested, nor can they call each other. If the same code needs to be referenced in different macros, it should be placed in a procedure in the same script file as all of the macros that reference it.

The following macro simply asks the user for a number and displays the sum of the positive integers less than or equal to that number (this macro can be found in the “Prefix Sum.itm” sample script file.

macro ‘Sum Integers’;

var

sumTo, sum : integer;

ii : integer;

begin

sumTo := GetNumber(‘Enter the number to sum up to’, 0, 0);

for ii := 1 to sumTo do begin

sum := sum + ii;

end;

ShowMessage(‘The sum from 1 to ‘, sumTo, ‘ is ‘, sum);

end;

The name of the macro (what appears between single quote after the macro keyword), can be composed of several pieces, which control where the macro appears in the ImageTool menu system. In general a macro name can have four parts, some of which are optional: an ImageTool menu name, a category name, a macro name, and an accelerator key number.

The ImageTool menu name is optional, but if it appears, must be one of “Annotation”, “Analysis”, “Process”, “Acquire”, or “Script”. The menu name indicates which menu you want ImageTool to place the macro into. If omitted, ImageTool places the macro into the Script menu.

The category is any string, and indicates the name of the sub-menu into which you want to place the macro. If the sub-menu does not exist, ImageTool will create it. This allows you to organize a group of related macros into a single sub-menu under one of the standard menus. The category name is optional.

The macro name is just the name of the macro, and will appear basically unchanged in the menu system. This is required.

The accelerator key number is an optional number between 1 and 12, and indicates the function key that will be used to invoke the macro. Note that if more than one macro uses the same function key number, ImageTool will assign the key to the first macro, in alphabetical order, that uses the key. The name of the macro will be changed to indicate the accelerator. The actual key sequence used to invoke the macro if Shift+ the function key.

The menu name, category, and menu name should appear first, in that order, separated by ‘|’. The accelerator key number, if present, should appear after the menu name in square brackets. Several examples may help here.

macro ‘Simple’;

This macro will be installed in the Scripts menu, after the built-in script commands. The name appearing on the menu will be “Simple”.

macro ‘Window Level|Auto Window Level’;

This macro will be installed in the Scripts menu, after the built-in script commands. A popup sub-menu will be created, named “Window Level”, and the command “Auto Window Level” will appear in the sub-menu.

macro ‘Process|Subtraction|Scaled Subtraction [6]’;

This macro will be installed in the Processing menu, after the built-in commands. A popup sub-menu will be created, named “Subtraction”, and the command “Scaled Subtraction Shift+F6” will appear in the sub-menu. The macro can be invoked by holding down the shift key and pressing function key F6.

C.
Procedures and Functions

A procedure is a subprogram called by a macro. Typically, procedures are used for common blocks of code that are needed by several different macros in a single source file, or are used in multiple places in a given macro. Using a procedure allows you to have just a single copy of the code in case it needs to be changed. Functions are simply procedures that return a value. Note that procedures and functions can call other procedures and functions.

A procedure or function needs to be placed in the script file before any macro or procedure that calls it. It is often helpful when writing macro files that make complex use of procedures to include a simple test macro for each procedure.

D.
Comments

A comment is anything inside of curly brackets ({ }). Comments do not slow macro execution, while they can greatly facilitate macro debugging and rewriting. Comments nest, so you can have comments inside comments. This makes it easy to temporarily remove some portion of a macro while testing: simply place a comment around the code to be removed, and ImageTool will not run the commented out code, even if it has other comments inside of it.

E.
String Literals

String literals are written in single quotation marks. The entire contents of the literal, excluding the opening and closing quotes, are used. In addition to the characters you can type on the keyboard, you can insert a tab character into the string using ‘\t’, a newline character using ‘\n’, a quotation mark using ‘\’’, and a backslash using ‘\\’. Thus, if you type the string literal ‘This is before a tab\tand this is after, while the word \’this\’ is in quotes’, ImageTool will interpret that as the string literal:

This is before a tab
and this is after, while the word ‘this’ is in quotes

ImageTool also allows you to break a single string literal up into pieces. This is generally useful for making a script more readable. The program will concatenate together all string literals that it finds in the script file separated only by whitespace, so, if the following appeared in a script file:

‘Now is the time ‘

‘for all good men ‘

‘to come to the aid of their country.‘

ImageTool would consider this a single literal string containing the famous quotation all on one line. Note that ImageTool does not retain the line breaks, and does not add spaces between the individual literals. If you wanted the quotation to include newline characters, you would need to add them yourself, i.e.,

‘Now is the time\n‘

‘for all good men\n‘

‘to come to the aid of their country.‘

4.
Variables

A.
Global variables

Global variables are declared at the beginning of the script file, before any macros, procedures or functions. The values of these variables are initially set to zero, and are reset every time macros are loaded; although they retain their values as long as the macro is loaded. Thus, if a macro is automatically loaded (that is, it is placed in the Scripts directory), then any assignments made to the global variables will remain in effect until ImageTool exits. On the other hand, if the script file is loaded using the Run Script File or Run Current Text Window commands, changes will only remain in effect until the macro exits.

B.
Macro variables

Macro variables are declared at the beginning of a macro, in the var statement before the initial begin. They are initially set to zero, and are reset whenever the macro is run. They are not available to any other macros, but can be passed to procedures and functions in parameter lists.

C.
Procedure variables

Procedure variables are declared at beginning of the procedure or function, in the var statement before the initial begin, or in procedure’s parameter list: e.g.procedure procadd(x,y) - x & y are implicitly declared. They are initially set to zero, and are reset whenever the procedure is entered. They are not available to any macros, but can be passed to other procedures and functions in parameter lists.

D.
Built-in variables

There are several built-in arrays. Each array is indexed starting at 1, with an upper-bound determined by the mechanism used to create the array.

linebuffer: is an array containing image pixel values. This array is populated by calling GetRow or GetColumn. The upper-bound of the array matches the most recent call to these commands. The data will be between 0-255 if the image is color or 8 bit grayscale, and between 0-65535 if the image if 16 bit grayscale. If the image is color, then there will be 3 times as many entries as indicated in the call to GetRow or GetColumn; each group of 3 values corresponds to the blue, green, and red values for a pixel, in that order. That is, if the image is color, then linebuffer[1] will be the blue component of the first pixel, linebuffer[2] will be the green component, and linebuffer[3] will be the red component, while linebuffer[4] will be the blue component of the second pixel. The next three arrays are used to facilitate access to the color values without having to multiply by three.

redpixel, greenpixel, bluepixel: are arrays containing image pixel values for color images. These arrays allow easier access to the individual color components of pixels in color images.

filebuffer: is an array containing the data read from a file using the ReadFile command. The upper bound of the array matches the number of bytes read from the file. All data are numeric values between 0-255. See the ReadTiffFile sample script for more information on read from files.

histbuffer: is an array containing the most recent histogram data. Each element in the buffer is an integer containing the number of pixels that had the specified gray level. Unlike all of the other arrays, histbuffer is indexed from 0, since gray levels start at 0. There is only one histogram buffer for all images, and it contains the results from the most recent call to the Histogram command (or, if Histogram has not been called but the user previous performed a histogram using the menus, that histogram data will be available). You cannot change the values in the histogram array, you can only examine them. If you need to store intermediate results from computations on the histogram array, use a user-defined array variable. Use the function GetHistogramLength to determine how many elements there are in the histogram.

lpbuffer: contains the most recent line profile data. Each element in the buffer is the gray level of a pixel along the line. There is only one line profile buffer for all images, and it contains the results from the most recent call to the LineProfile command (or, if LineProfile has not been called but the user previous performed a line profile using the menus, that profile data will be available). You cannot change the values in the profile array, you can only examine them. If you need to store intermediate results from computations on the profile array, use a user-defined array variable. Use the function GetLineProfileLength to determine how many elements there are in the profile.

redLUT, greenLUT, blueLUT: are arrays containing the lookup tables for the current image. These LUTs are only available if the current image is eight bits deep. Note that ImageTool does not have the concept of a single, global color table like NIH Image. This is one of the most significant differences in the way these two programs handle color (the other is the Mac definition of 0 as white, whereas ImageTool and Windows consider 0 to be black). As an example, the following script creates a new text window containing the current color table as a series of 256 sets three integer values, one per line, where each line represents an entry in the color table.

macro 'LUT|Export';

var

 i:integer;

 v:real;

 tab:string;

 r,g,b : integer;

begin

 MakeNewTextWindow('LUT');

 tab:=chr(9);

 for i:=0 to 255 do begin
 ChoosePic(2);

 r := RedLut[i];

 g := GreenLut[i];

 b := BlueLut[i];

 ChoosePic(1);

 Writeln(i:4,tab,r:4,tab,g:4,tab,b:4);

 end;

end;

Note the use of temporaries to hold the color table so that we can select the text window as the target of the WriteLn. This intermediate step is not necessary in Image.

5.
Variable Types

boolean
Boolean variables can have two values: 0 (false) or 1 (true). Attempting to give boolean variables other values will produce error messages when the values are called in boolean statements.

real
real numbers, e.g 2.345

integer
whole numbers, e.g. 1,4,8. N.B. by default real numbers are converted to integers with rounding. The functions Round(n), Trunc(n) and Abs(n) are available for further control.

array
array of numbers. They have no upper bound, and are indexed from 1 just like the built-in arrays. If not assigned a value, individual array elements are undefined.

A note on coordinates: the upper-left corner of the image is considered to be (1,1), with values increasing as you move right and down. In Windows, coordinates are considered to start at 0, with (0,0) at the bottom-left corner, and y values increasing as you go up. For this release, we have made every effort to hide script writers from this confusing mess, and all coordinate values should follow the upper-left = (1,1) convention. If you find a place where this is not so, or where coordinate values are confusing, please let us know.

6.
LOGIC and LOOPs

A.
Conditional operation

IF <boolean statement> THEN BEGIN

.

.

END ELSE IF <boolean statement> BEGIN

.

.

END ELSE BEGIN

.

.

END;

Extra complexity can be added by adding additional ELSE IF statements.

The boolean statements can use the operators = < > <= >= with either boolean or numeric variables. If AND or OR statements are used then the sub-statements must be put in parenthesis, e.g. IF (a>5) OR (a<15) THEN...
BEGIN and END are not needed if there is only a single statement, e.g. IF THEN a:=+5; instead of IF THEN BEGIN a:=+5; END; Note, however, that liberal use of BEGIN … END can facilitate maintenance of macros. One of the most common mistakes made by beginning programmers in college is misplaced semicolons in IF statements.

If BEGIN and END are not used and an ELSE clause is needed, note that the statement in the IF clause must not have a semicolon after it, or the interpreter wil produce an error message.

B.
Conditional loops

REPEAT

.

.

UNTIL <boolean statement>;

WHILE <boolean statement> DO BEGIN

.

.

END;

These two forms are different in syntax but very similar in practice. The primary difference is that the REPEAT statement will always execute the loop code at least once. In actual practice, WHILE loops are much more common than are REPEAT loops.

C.
Incremental loop

FOR counter:=val TO val [BY val] DO BEGIN

.

.

END;

counter should be an integer variable, it will be incremented at the end of each loop. If the BY clause is omitted, the loop counter will be incremented by 1, otherwise, it will be incremented by the value of the BY expression.

Complex arithmetic statements are allowable instead of simple variables/values in the FOR ... TO ... DO statement.

The counter can have its value changed by statements inside the loop; e.g. IF found THEN counter:=100;

7.
Interaction
A.
Getting input from the operator

The number of options here is strictly limited, but with ingenuity quite a lot is possible.

Button
Returns true/false depending on whether the operator is pressing the left mouse button.

IF button THEN Exit;

GetMouse(x,y)
Returns the mouse coordinates.

GetNumber(`prompt`,default)
Gives a simple dialog box to allow input of number.

newy := GetNumber(`Please input new value`, oldy);

GetString(`prompt`,`default`)
Gives a simple dialog box to allow input of number.

newstring := GetString(`Please input new value`, oldy);

GetUserAngleRoi,GetUserLineRoi,GetUserPoint,GetUserRoi.
Prompt the user to draw on the image. The resulting roi can be retrieved using GetLine or GetRoi.

GetOpenFileName,GetSaveFileName:
Allows the user to select a file to save or load.

B.
Displaying output

Numerous functions display output graphically but the following are specially designed for macro output:

ShowMessage(e1,e2,..)
Displays a message box displaying the formatted string .

Beep
Issues a beep. It may be unsophisticated, but it is often handy.

Many of the built-in commands send values to the results window. The actual values can be controlled using the Set command.

C. Displaying images

ImageTool almost always displays the results of a processing operation in a new window. This gives the user the greatest flexibility in determining when to keep intermediate results and when to discard them. The scripting language, however, uses just the opposite rule: new images are almost always displayed in the currently selected window. This is done to simplify scripts -- if the standard ImageTool policy were followed, scripts would be littered with lines saying

ChoosePic(2); Dispose;

to get rid of intermediate results. Note that it is possible for script writers to get the same effect by simply using Duplicate to create an exact copy of the current image window before performing a processing operation. In general, you should attempt to maintain consistency with ImageTool's interface whenever possible: before beginning processing, create a copy of the image and work on it.

8. Write and WriteLn

Throughout this document, you will see references to commands that “accept formatted arguments like the Pascal Write command”, or some variant of this. The original Pascal language provided built-in support for formatted I/O via the Write and WriteLn commands (the only difference was that WriteLn added a carriage return at the end of the line, so we will heretofore refer only to the Write command). Basically, you could put anything inside the argument list to Write, and Pascal would dutifully convert it to a readable form. ImageTool’s built-in commands provide the same feature.

There are only four data types in ImageTool, so the formatting features are fairly straightforward: strings are left as-is, integers and reals are formatted according to the width specifications (see following), and booleans are formatted as either 0 (false) or 1 (true).

Width specifications allow you control over the format of numeric data. Each numeric value can be followed by up to 2 additional numeric constants, separated by colons. The first value specifies the overall field width, the second specifies the number of places after the decimal point. Careful use of these values can produce nicely formatted data, although this is not likely to be critical to most users of ImageTool. If you omit a width specifier, a default value will be used. The default for the field width is the actual width of the data; the default for the floating point width is 4 places (although fewer will be used if necessary). For example, if you wish to display a string showing the arithmetic result of subtracting two numbers, you might use:

Write(operand1, ‘ –‘, operand2:4, ‘ =‘, result:4:2);

With operand1 = 6.3 and operand2 = 3.61, you would get the output:

6.3 - 3.61 = 2.69

Experimentation with the ShowMessage command can help you understand the capabilities of the built-in formatting.

9.
Pid and Pic Numbers

ImageTool’s scripting language provides two different, but complementary ways of referring to image windows: pic and pid numbers. The pic number is the ordinal position of the window in the z order (the top window is 1, the next one down is 2, etc); the pid number is a globally-unique identifier for a window. Pic numbers will change as images are opened and closed, different images may have a given pic number throughout the execution of a script, and a single window may have different pic numbers at different times. On the other hand, pid numbers are guaranteed not to change or be re-used throughout a single execution of ImageTool. Generally, pid numbers are good if you want to perform several operations on a single image, while pic numbers are best if you want successive operations to be performed on the topmost window even as new windows are displayed. The following macro can be useful for understanding how the two numbers are related. You should open several image windows, and watch the values as the windows are shuffled:

procedure ShowNumbers;

begin
 ShowMessage(WindowTitle,

 ': pid number = ',

 pidNumber,

 ' pic number = ',

 picNumber);

end;

macro 'Pid Numbers';

var
 i : integer;

begin
 for i := 1 to nPics do begin
 ChoosePic(i);

 ShowNumbers;

 SelectPic(i);

 ShowNumbers;

 end;

end;

10.
Results

ImageTool provides a simple spreadsheet-organized window for holding the results of measurements performed on images. Several of the built-in commands will send information to the results window as a side effect. However, it is frequently the case that all you want from a measurement command are the measurements themselves, you do not want the command to have any impact on the results window at all. To provide this feature, ImageTool has a single-line temporary buffer that can hold a single result. If the results window is iconic, i.e., by calling ShowResults(false), then any command that produces results will send them to the temporary buffer, and any attempt to read the results will return the contents of the temporary buffer. For example, the following script computes optimal settings for the window and level values by asking ImageTool to generate the min and max gray values in the center of an image. This macro also uses the SaveSettngs and RestoreSettings commands (see the next section). This macro is available (in a slightly different form) as part of the sample script file “Window Level.itm”

macro 'Auto Window/Level';

var
 w, h : integer;

 minG, maxG, window : integer;

begin
 GetPicSize(w, h);

 MakeEllipseRoi(w/4, h/4, w/2, h/2);

 {

 Get a histogram in the current roi.

 }

 SaveSettings('histogram');

 Set('histogram', 'flags:=min gray|max gray');

 ShowResults(false);

 Histogram;

 KillRoi;

 RestoreSettings('histogram');

 minG := StringToNum(GetResults('min', 0));

 maxG := StringToNum(GetResults('max', 0));

 window := maxG - minG;

 SetWindowLevel(window, minG+(window)/2);

 ShowResults;

end;

11.
Settings

ImageTool is very configurable. There are in excess of 75 values that can be set in just the program itself, and many plug-ins offer configuration capabilities as well. In general, these settings can be changed inside of a macro by using the Set command. Many times, as in the script above, you will want to make a temporary change to a setting or group of settings. In such a case, you can use the SaveSettings and RestoreSettings commands.

12.
Missing features/things you cannot do

1. Access numerous constants - many constants can be set, e.g. SetScale(scale,units) but only a very few can be read, and some constants can be neither read nor written. E.g. Pixel aspect ratio, can only be set via the Set Scale dialog box and can only be determined by a macro by measuring a square roi.

2. Access extra math functions - the range of math functions provided by ImageTool is limited, but carefully selected, consult your math texts to remember how to derive the others. E.g. arctan is provided but not arcsin or arccos. But tan(a)=sin(a)/cos(a) and sin(a)^2=1-cos(a)^2, so you can get round that shortcoming.

3. Access math constants - no mathematical constants (except for pi) are defined. Define them in the macro or write out the number each time.

4. Scroll windows.

13.
Known bugs

1. Some compilation errors will result in ImageTool crashing. This will happen most often when the offending script is automatically loaded from the Scripts directory. To reduce the chance of this happening, we recommend that you first make sure that you have your syntax correct by opening the file using either the Run Script or Open Text Window commands. When run this way, almost no errors cause ImageTool to crash.

2. Support for unsigned gray levels is only rudimentary. If you find places where gray values are not reported in unsigned values, please let us know.

3. The Export command is still in an experimental phase. If you want it to do something that it doesn’t do, or you think it has a bug, let us know.

4. Canceling roi commands can intermittently cause crashes. If this happens to you please let us know.

14. Startup Scripts.

When ImageTool is first started, it will look in the startup directory for a file named ‘startup.itm’. If the file exists, ImageTool will attempt to run the first macro it finds in the file (just as if the script file had been run using the Scripts|Run command). The script itself can contain any commands from the scripting language.

15.
Alphabetical List of Built-In Commands.

This section describes the built-in commands. The syntax used in the manual is a hybrid of Pascal and C++ that may be foreign to you at first, but should be meaningful upon a little reflection. Each command begins with a Pascal-like declaration that defines its calling interface. The name of the command is given first (command names are not case-sensitive), followed by the parameters that the command takes. If a command does not take any parameters, then none are listed. After the parameter list is the data type that the command returns, if any. Many of the built-in command have optional parameters. These are indicated in the definition by giving values for the parameters. An example would help here. Consider the definition for the SetScale command, which is used to set the spatial calibration for the top-most image:

SetScale(scale : real; unit : string; AspectRatio : real := 1.0)

This states that the SetScale command can take three parameters, the first of which is the scale value (the number of pixels per unit), the second of which is the name of the calibration units, and the third of which is the aspect ratio (y/x) of pixels. The aspect ratio parameter is optional; not providing it is the same as providing a value of 1.0.

Many of the built-in commands operate on the current image window. Normally, this would be the top-most window, but it is possible to select a window for processing without actually activating it (saving the time required to paint the window when it becomes topmost) using the ChoosePic command. See the description on pic and pid numbers above for more information.

Access to the pixels in an image is provided via two mechanisms: the commands GetPixel and PutPixel, and the line buffer. The GetPixel/PutPixel commands allow you to access a single pixel in the current image, and while some effort has been made to optimize the routines, they can be very slow. The line buffer, on the other hand, is a single built-in array that can be used to store a sequence of values from an image for processing as a group. The routines GetRow, GetColumn, PutRow, and PutColumn all access the line buffer. Once you have copied a portion of the current image into the line buffer, you access it using array-indexing expressions on the linebuffer, redpixel, greenpixel, or bluepixel array names. For example, the following script produces an RGB image in which the red pixel values in an existing RGB image have been inverted.

macro 'InvertRed';

var

 row, col : integer;

 r, c, b : integer;

 p1, p2 : integer;

begin

 p1 := PidNumber;

 GetPicSize(c, r, b);

 if b <> 24 then
 Exit('This macro only works on 24 bit images.');

 SetNewSize(c, r, 24);

 MakeNewWindow;

 p2 := PidNumber;

 for row := 1 to r do begin
 ChoosePic(p1);

 GetRow(1, row, c);

 for col := 1 to c do begin
 redpixel[col] := 255 - redpixel[col];

 end;

 ChoosePic(p2);

 PutRow(1, row, c);

 end;

end;

Note that routines that require a file name or window title (MakeNewWindow, MakeNewStack, Open, SaveAs, Import, etc.) accept multiple arguments similar to the ShowMessage routine, except that numeric fields are left filled with zeros rather than spaces. As an example, SetPicName('PIC',n:2) result in window titles in the form 'PIC01', 'PIC02', 'PIC03', etc. In addition, numerous other commands require a certain number of arguments, followed by a string value. Typically, that string value can be built up using multiple values as in WriteLn. An example of such a command is AddResults, in which the last argument, representing the values to add to the results window, will be built from all of the arguments following the header string name. This makes is very convenient to build up the results value, and eliminates the need to construct a formatted string using the Format command. See the sample scripts for examples.

abs(n : real) : real

Purpose

Returns absolute value of n
AddConstant(n : real)

Purpose

Adds the value n to each pixel in the current image. n must be between -255 and 255.

AddResults(source : string; flags : integer; header : string; line : string);

Purpose

Adds the given values to the results table. The values source and flags are used by ImageTool to uniquely identify the source and type of data in the results window. The source should be a string that uniquely identifies the process that generated the data. This means that you may want to use the same source name for the data from several related macros if the data is formatted the same.

The flags parameter is used by ImageTool to distinguish between different types of data from the same source. For example, histogram data is sent to the results window using a source of ‘histogram’, and the flags are set to reflect which columns are actually used.

The header contains a tab-separated list of string, where each item between tabs is a column header.

The line value is the actual data to place into the results window. It should be a tab-separated list of values, where each item between tabs is a column value. The number of items in the header must match the number in the line.

The results window currently recognizes several control strings which can be used to change the manner in which the results are displayed. Currently, the following control strings are recognized:

\rowfg(COLOR)
Sets the default foreground color for the entire row. COLOR is one of the recognized colors: WHITE, RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW, GRAY, LTGRAY, or 3 integer values separated by commas.

\rowbg(COLOR)
Sets the default background color for the entire row.

\cellfg(COLOR)
Sets the foreground color for just this cell.

\cellbg(COLOR)
Sets the background color for just this cell.

Note that the \rowfg and \rowbg control strings must appear in the text of the first field. If they are encountered elsewhere, they will be ignored. The results window is very picky, there should be no whitespace inside the control strings, nor should there be any before or after the control string. For an example, see the object classification plug-in.

As is the case with other commands that send results to the results window, if the results window is iconic, the values are sent to the one-line temporary results buffer (not particularly useful in this case). Thus, you should make sure that the results window is visible (using ShowResults(true)) before sending values to it.

AddSlice

Purpose

Adds a slice to the stack in the current image window. The new slice will be after the current slice. The current image window must contain a stack.

ApplyLUT

Purpose

Transforms the pixel data using the current look-up table. This is the same as the ImageTool apply contrast to image menu command.

Arctan(n : real) : real

Purpose

Returns arctangent of n (radians)

AutoDensitySlice

Purpose

Computes minimum and maximum threshold values. No change is visible in the image; rather, the values are stored in the interpreter and can be used in successive calls to MakeBinary, FindObjects, etc.

AutoThreshold

Purpose

Computes a single threshold value. The value computed becomes the top of the current density slice, the bottom value is 0.

AverageSlices

Purpose

Builds a new image in which every pixel is the average of the values in each slice in the current stack. This command is implemented as a call to the stack average plug-in.

Beep

Purpose

Sounds a beep on the computer’s speaker.

BitAnd(n1 ,n2 : integer) : integer

Purpose

Returns the result of performing a bit-wise AND of the two values. The resulting number will have a 1 in every bit position where both n1 and n2 were 1, and a 0 everywhere else. This operation is useful for masking operations.

BitOr(n1,n2 : integer) : integer

Purpose

Returns the result of performing a bit-wise OR of the two values. The resulting number will have a 1 in every bit position where either n1 or n2 were 1, and a 0 everywhere else.

Button : boolean

Purpose

Returns true if the left mouse button is pressed. This routine is not overly sensitive, it is fairly easy to miss a mouse click.

Calibrate(fit, unit : string; m1, k1, m2, k2, ... : real)

Purpose

Performs a density calibration. fit is one of 'straight', 'poly2', 'poly3', 'poly4', 'exp', 'power', 'log', or 'uncalibrated', unit is the unit of measurement. m1, m2, etc. are the measured values and k1, k2, etc. are the known values. For example, Calibrate('Straight', 'Invert', 0, 255, 255, 0)" sets up a simple inverting function. Use Calibrate('Uncalibrated') to disable density calibration.

Calibrated

Purpose

True if current image is density calibrated.

CascadeWindows

Purpose

Cascades the open image windows in the main ImageTool window.

ChangeValues(v1,v2,v3 : integer)

Purpose

Changes pixels with a value in the range v1-v2 to v3
ChoosePic(n : integer)

Purpose

Selects the nth image window without activating it. Faster than SelectPic but changes are not displayed. The routine accepts either pic numbers or pid numbers (see the PidNumber function). Note that, even if the selected image window is an unlocked stack, new images will not be added to the window. This feature facilitates processing of stacks: use SelectPic to bring the destination stack to the top so that the new images will be added to it, and use ChoosePic to select the source stack. The following macro creates a new stack which contains the result of applying a smoothing filter to every image in a stack.

macro 'Stacks|Smooth';

var

 i,n : integer;

 w,h : integer;

begin

 GetPicSize(w,h);

 SetNewSize(w,h);

 MakeNewStack;

 DeleteSlice;

 ChoosePic(2);

 n := nSlices;

 for i:= 1 to n do begin
 ChoosePic(2);

 SelectSlice(i);

 Filter('Smooth');

 end;

end;

ChoosePic(n1, n2 : integer)

Purpose

Selects the two windows as the ones to use for the next call to PlugIn. Neither window is activated. If the next plug-in is a 2 image processing plug-in, then n1 will be passed as the first image, and n2 as the second. If the next plug-in is a 1-image or analysis plug-in, then n1 is passed.

ChooseSlice(n : integer)

Purpose

Selects the nth slice in the current stack window without activating it. Faster than SelectSlice but changes are not displayed.

chr(n : integer) : string

Purpose

Converts a positive integer in the range 0..255 to a one character string (e.g. chr(65) = 'A').

Close

Purpose

Closes the active window.

CloseAll

Purpose

Closes all image windows.

concat(str1, str2,... : string) : string

Purpose

Concatenates a series of strings

Convolve(kernelName : string)

Purpose

Applies the given kernel to the current image window.

Copy

Purpose

Copies contents of current ROI to Clipboard

CopyAnnotations(from : integer);

Purpose

Replaces the annotation set for the current image with a copy of the annotation set from the given image. If you wish to copy the annotation that shows the current object set, you should call CopyObjects instead. This is because the annotation that displays the object set uses the contents of the object set to determine what to paint. If all you want to copy is the object set, then you need only call CopyObjects, since every window has a permanent object set annotation.

CopyObjects

Purpose

Replaces the object set for the current image with a copy of the object set from the given image.

CopyResults

Purpose

Copies measurement results to the Clipboard

CopyRows(first, last : integer)

Purpose

Places the given range of data from the results window onto the clipboard.

cos(n : real) : real

Purpose

Returns cosine of n (radians)

CutRows(first, last : integer)

Purpose

Removes the given range of data from the results window and places them on the clipboard.

cValue(v : integer) : real

Purpose

Converts raw pixel values to density calibrated values.

Delete(str : string; index,count : integer) : string

Purpose

Removes count characters from str, beginning at index
DeleteRows(first, last : integer)

Purpose

Removes the given range of data from the results window.

DeleteSlice

Purpose

Deletes the current slice

Dilate

Purpose

Performs a dilation filter on the current image.

DiscardResults

Purpose

Clears the results window without asking the user if they want to save them. This implements a feature not available from ImageTool, and is provided to make macros run more smoothly. It should be used with caution, as users expect to be able to save intermediate results.

Dispose

Purpose

Similar to Close, but user is never prompted to save changes

DisposeAll

Purpose

Closes all open image windows without asking the user to save any changes.

DrawBoundary

Purpose

Outlines the current roi in the current foreground color.

Duplicate

Purpose

Creates a new image window having a duplicate of the top-most window.

Erase

Purpose

Fills the current roi with the current background color. If the background color is a grayscale value greater than 255, the image must be grayscale as well. Similarly, if the background color is not a gray RGB value, then the image must be a 24 bit color image.

Erode

Purpose

Performs an erosion filter on the current image.

Exit(message : string := ‘’)

Purpose

Terminates execution of the macro. If message is not empty, then the message is displayed in a message box before exiting. The message can be built using writeln-style arguments.

Exp(n : real) : real

Purpose

Returns exponential of n, en
Export(filename : string);

Purpose

Exports the image in the topmost window to the given file. If filename is blank, then the user will be prompted for the filename. The settings are controlled by the “binary io” settings (see Set command). Currently, only a few of the binary i/o settings effect the export command.

Fill

Purpose

Fills the current roi with the current foreground color. If the foreground color is a grayscale value greater than 255, the image must be grayscale as well. Similarly, if the foreground color is not a gray RGB value, then the image must be a 24 bit color image.

Filter(filter : string := ‘’)

Purpose

Applies the given filter to the image. If no name is given, the user is prompted for a mask file to load. The filter name can be the name of a filter (.mas) file, or one of the built-in filter: smooth, smooth more, sharpen, sharpen more, median, max, min.

FindObjects

Purpose

Looks for objects in the current image. The window is first thresholded using the current threshold settings. The output is controlled by the settings on the Find Objects page.

FlipHorizontal

Purpose

Flips the area outlined by the current rectangular roi about its vertical axis.

FlipVertical

Purpose

Flips the area outlined by the current rectangular roi about its horizontal axis.

Format : string

Purpose

Takes a sequence of string and numeric values and builds them into a single string, formatting them as the WriteLn command does.

GetColor(prompt : string; r,g,b : integer)

Purpose

Displays the color picker common dialog and asks the user to select a color. r, g, and b should be initialized to the default color. If they are grayscale, the custom colors in the dialog will be shades of gray, otherwise, they will be the 16 standard Windows colors. Upon return, r, g, and b will contain the color selected by the user.

GetColumn(x,y,length : integer)

Purpose

Copies a column of pixels from active image to the line buffer

GetFont(prompt : string)

Purpose

Displays the font picker common dialog and asks the user to select a font. The selected font will become the current text font.

GetHistogramLength : integer

Purpose

Returns the number of elements in the current histogram. If no histogram has been computed, it returns 0. If the return value is non-zero, it represents one more than the maximum index in the built-in array histbuffer. This value is one more than the number of gray levels in the histogram, and will always be a multiple of 2, starting at 256.

GetLine(var x1,y1,x2,y2,LineWidth : integer)

Purpose

Returns coordinates and width of current straight-line selection. Sets x1=-1 if there is no line selection.

GetLineProfileLength : integer

Purpose

Returns the number of elements in the current line profile. If no line profile has been computed, it returns 0. If the return value is non-zero, it represents the maximum index in the built-in array lpbuffer.

GetMouse(var x,y : integer)

Purpose

Returns location of cursor in local pixel coordinates.

GetNumber(Prompt : string; default, d : integer := 0) : integer

Purpose

Displays a dialog box and returns with the value entered. Prompt is the prompting string. Default is the default value. d (optional) is the number of digits to the right of the decimal point (default is 2). Use zero to request an integer.

GetOpenFileName(Prompt : string; ext : string; fn : string) : string

Purpose

Prompts the user to select a file. The file must exist. prompt is the string that will be presented to the user in the caption of the standard open dialog, ext is the default extension for files to search for, and fn is the original filename. The result value is the complete pathname of the selected file.

GetPicSize(var width,height : integer)

Purpose

Returns width and height of active image

GetPixel(x,y : integer; pid : integer := 0)

Purpose

Returns the value of the pixel at (x,y). If pid is not provided, then the current image is used.

GetResults(column : string; row : integer) : string

Purpose

Extracts from the results window the given value. The column name must match exactly (not including case), and row numbers are 0 based. You can extract the mean for a column by using row -2, and the standard deviation using row -1. The results are returned as a string, use StringToNumber to convert it to a numerical value. This command is different from the Image command of the same name.

GetRoi(var left,top,width,height : integer)

Purpose

Returns ROI location and size. Sets width=0 if no ROI. Returns location and size of bounding rectangle for non-rectangular ROIs and for line selections.

GetRow(x,y,length : integer)

Purpose

Copies a row of pixels from the active image to the line buffer

GetSaveFileName(Prompt : string; ext : string; fn : string) : string

Purpose

Prompts the user to select a file. If the file already exists, the user will be asked if they wish to overwrite the file.. prompt is the string that will be presented to the user in the caption of the standard open dialog, ext is the default extension for files to search for, and fn is the original filename. The result value is the complete pathname of the selected file.

GetScale(scale : real; unit : string; AspectRatio : real := 1.0)

Purpose

Returns the number of pixels per unit of measurement in the real variable scale, the unit of measurement in the string variable unit, and (optional) the pixel aspect ratio in the real variable AspectRatio. For uncalibrated images, scale and AspectRatio are set to 1.0 and unit to ‘pixel’.

GetSerial : string;

Purpose

Retrieves a single byte from the serial port and returns it as a one-character string. OpenSerial must be called before GetSerial.

GetString(Prompt, default : string) : string

Purpose

Displays a dialog box and returns with the string entered. The first argument is the prompting message and the second argument (optional) is the default input string.

GetThresholds(var min, max : integer)

Purpose

Returns in the parameters the current min and max threshold settings.

GetTime(var yr, mon, day, hr, min, sec, dayofweek : integer)

Purpose

Returns the current date and time.

GetUserAngleRoi(prompt : string)

Purpose

Prompts the user to draw an angle roi. The string prompt will be displayed in a dialog box.

GetUserLineRoi(prompt : string; multi : boolean)

Purpose

Prompts the user to draw a line roi. The string prompt will be displayed in a dialog box. If multi is true, then the user will be allowed to draw multi-segment lines.

GetUserPoint(prompt : integer; var x, y : integer)

Purpose

Prompts the user to pick a single point. The prompt prompt will be displayed in a dialog box. The selected coordinates are returned in x and y.

GetUserRoi(prompt : string; poly : boolean)

Purpose

Prompts the user to draw an roi. The string prompt will be displayed in a dialog box. If poly is true, then the user will be allowed to draw polygons.

GetUserThresholds(prompt : string; int min := 0; int max := 255)

Purpose

Displays the manual thresholding dialog. The slider is originally set to the given values. The prompt value may someday appear in the dialog box.

GetWindowLevel(var w, l : integer)

Purpose

Retrieves the window and level values for the top-most image.

GetZoom : integer

Purpose

Retrieves the current zoom factor.

Histogram

Purpose

Computes a histogram of the current ROI. The values requested in the histogram settings page are sent to the results window.

ImageMath(op : string; p1, p2, scale, offset : integer; result)

Purpose

Where o is one of ‘add’, ‘sub’, ‘mul’, ‘div’, ‘and’, ‘or’, ‘xor’, ‘min’, ‘max’ or ‘copy’Pic1 and pic2 are pic numbers or pid numbers. The specified operation is performed, the result is multiplied by scale, offset is added and the final result is clipped to 8-bits. The arithmetic operation is performed in the upper left corner of each image using the largest common rectangle. Result can be either a string or a pid number. If it’s a string, a window with that name is created to store the result, otherwise the result is stored in the image specified by the pid number.

Import(filename : integer)

Purpose

Opens the given file, displaying the Import dialog box.

IndexedToRGB

Purpose

Converts 8-bit color images to RGB. Implemented as a call to the 8-24.dll plug-in.

InsetRoi(delta : integer)

Purpose

Shrinks or expands (if delta<0) ROI by delta.

Invert

Purpose

Linearly inverts the current roi

InvertLUT

Purpose

Inverts the image look-up table

KeyDown(key : string) : boolean

Purpose

Checks the state of the specified modifier key. ‘key’ is one of: 'alt', 'shift', or 'control'. Returns true if the specified key is down.

KillRoi

Purpose

Disables the current “marching ants” selection

length(str : string) : integer

Purpose

Returns the length of str
LineProfile

Purpose

Computes a line profile of the current line ROI. The values requested in the line profile settings page are sent to the results window.

LineTo

Purpose

Draws a line in the bitmap of the current image using the current foreground color. The line begins at the current location, as set by a previous call to either MoveTo or LineTo. The current location is updated as a side effect of this call.

ln(n : real) : real

Purpose

Returns natural logarithm of n
LoadDensityCalibration(name : string := ‘’)

Purpose

Loads the specified file as a density calibration. If name is omitted, the user is allowed to select a file.

LoadSpatialCalibration(name : string := ‘’)

Purpose

Loads the specified file as a spatial calibration. If name is omitted, the user is allowed to select a file.

MakeAngleROI(x1,y1,x2,y2,x3,y3 : integer)

Purpose

Creates a new selection which is an angle with its vertex at [x1, y1], and two endpoints at [x2, y2] and [x3, y3].

MakeAnnotation(class : integer := 0; string args := ‘’)

Purpose

Converts the current roi into an annotation using the current foreground color. The class is used by ImageTool to facilitate manipulating a group of annotations together. args is a string that controls how ImageTool converts the roi, and depends on the type of roi. ImageTool will ignore argument values that it does not recognize.

Roi Type
Argument
Notes

Angle
none
Angle rois are always converted into two-segment lines drawn in the current foreground color. No arguments are recognized at this time.

Line
none
Line rois are converted into multi-segment line annotations drawn in the current foreground color.

pointer
Valid only if the current line roi contains exactly one segment, this argument causes the roi to be converted into a pointer annotation with the body colored in the current foreground color, and the tip colored in the current background color. If the roi has more than 1 segment, a run-time error occurs.

left, right, top, bottom
Used only in conjunction with the pointer argument, causes ImageTool to use the endpoint specified as the front of the pointer.

Polygon or ellipse
none
Polygonal rois are converted into unfilled outline rois drawn in the current foreground color.

fill
Causes the polygon to be filled in the current foreground color.

fillbg
Causes the polygon to be filled in the current background color.

MakeBinary

Purpose

Converts a gray scale image to binary. The thresholds are the current settings.

MakeEllipseRoi(left, top, width, height : integer)

Purpose

Creates a new elliptical roi. ImageTool considers the roi to be polygonal, so it can be measured using the histogram and area tools.

MakeLineRoi(x1,y1,x2,y2 : integer)

Purpose

Creates a new line roi having the two endpoints.

MakeNewStack(name : string := ‘’)

Purpose

Creates a new 1-slice stack. Use SetNewSize to specify size. If name is omitted, the window is untitled. Use SetNewSize to specify the size of the window.

MakeNewTextWindow(Name : string := ‘’)

Purpose

Creates a new text window. If name is omitted, the window is untitled.

MakeNewWindow(Name : string := ‘’)

Purpose

Creates a new image window. Use SetNewSize to specify size. If name is omitted, the window is untitled. Use SetNewSize to specify the size of the window.

MakePolygonRoi(x, y : array; nPoints : integer)

Purpose

Creates a new polygonal roi. The pairs of values in x and y give the points in the polygon.

MakeRoi(left, top, width, height : integer)

Purpose

Creates a new rectangular roi. The coordinates are one-based, and start at the top-left corner of the image.

Measure

Purpose

Measures the current roi. The precise behavior depends on the type of roi.

If the roi is an angle, Measure computes the angle subtended by the roi. Places into the results window the values requested on the angle settings page. If the results window is iconic, the values are placed into the temporary results buffer.

If the roi is a polygon or ellipse, Measure computes the area of the roi. Places into the results window the values requested on the area settings page.

If the roi is a line, Measure computes the length of the linear. Places into the results window the values requested in the distance settings page.

MergeAnnotationsIntoImage

Purpose

Creates a new image in which the annotations from the top image have been merged into the bitmap itself. The resulting image will look just like the original, but the pixel values will reflect the annotations and not the underlying image. Care should be taken with the image bit depths: the resulting image will have the same bit depth and color table as the original image. While this is not a problem for true color images, 8 bit images may not accurately reflect the colors of the annotations. In particular, color annotations will show up as shades of gray on a grayscale image. If you wish for color annotations to remain color on top of a grayscale image, you should use the 8-24 plug-in by calling PlugIn(‘8-24.dll’), then copy the annotations (and possibly the objects) to the new image (using CopyAnnotations and CopyObjects) before merging the annotations into the image.

MoveRoi(dx, dy : integer)

Purpose

Moves ROI right dx pixels and down dy pixels

MoveTo(x, y : integer)

Purpose

Establishes the current location. The current location is used by the Write and WriteLn commands when drawing text into a window, and by the LineTo command when drawing lines into the image.

MoveWindow(x, y)

Purpose

Moves current window to global screen coordinates (x, y).

MultiplyByConstant(n : real)

Purpose

Multiplies each pixel in the current image by n. Pixels outside of the range 0-255 (or 65535 for 16 bit images), are truncated.

NextWindow

Purpose

Selects and brings to the top the second-most image window.

nObjects

Purpose

Returns the number of objects in the current image window.

nPics

Purpose

Returns number of image windows.

nPixels

Purpose

Returns number of pixels in the current image.
nSlices

Purpose

Returns number of slices in current stack

ObjectToRoi(objectNumber : integer);

Purpose

Converts the given object into a polygonal roi. This facilitates measuring objects in the window under the control of a macro. The object remains in the object set for the image. Object numbers are based at 1.

odd(n : integer) : boolean

Purpose

Returns true if n is odd.

Open(name : string := ‘’)

Purpose

Opens the given image. If the name is omitted, the user is prompted for the image to open. Opening a window causes the current pid number, as selected using Choose/SelectPic/Pid, to be reset. This command can be used to open text files as well.

OpenSerial(port : integer; settings : string)

Purpose

Opens the given serial port. port is the COM port number to open. settings defines how to open the port, and can be any combination of the following:

Baud rate: '300', '1200', '2400', '9600', '19200'

Stop bits: 'one' or 'two'

Data bits: 'seven' or 'eight'

Parity: 'even', 'odd', or 'none'

The default settings are 9600 baud, one stop bit, eight data bits, no parity.

ord(str : string) : integer

Purpose

Returns the ordinal number of the first character in a string (e.g. ord('A')=65). Returns -1 if the string is empty.

Paste

Purpose

Creates a new window containing the contents of the clipboard; or, if the top window is a text window and there is text on the clipboard, inserts the text into the window.

Pi : real

Purpose

Returns the value of pi to the full precision of an Intel floating point number (to be exact: 3.14159265358979323846);

PicNumber : integer

Purpose

Returns number (used by SelectPic) of active image

PidExists(pid: integer) : boolean

Purpose

Returns true if image with this pid Number is still open

PidNumber : integer

Purpose

Returns the permanent ID number for the current image

PlugIn(name : string := ‘’, arguments : string := ‘’)

Purpose

Runs the specified plug-in. The filename can include a full pathname. If a full pathname is not given, then the program looks in the application directory, followed by the Plug-Ins directory. If the plug-in is not already loaded, ImageTool will load the plug-in and add it to the menu structure. The arguments are optional, and can be expressed using WriteLn-style formatting. If provided, they are passed to the plug-in’s “Set” entry point. If the plug-in does not support the Set entry point, then the macro terminates with a run-time error.

Points

Purpose

Allows the user to select points (as in the Analysis | Points command). The results are sent to the results window.

Pos(substr, str : string) : integer

Purpose

Searches for substr within str and returns an integer that is the index of the first character of substr within str. Returns zero if substr is not found.

Print

Purpose

Prints the active image

PrintSetup

Purpose

Displays the print setup dialog box.

PutColumn(x,y,length : integer)

Purpose

Copies length pixels from line buffer to a column in image

PutPixel(x,y,value : integer)

Purpose

Changes value at location (x,y)

PutRow(x,y,length : integer)

Purpose

Copies length pixels from line buffer to a row in the image

PutSerial(value : string)

Purpose

Writes the given string to the serial port. OpenSerial must be called before any call to PutSerial.

random : real

Purpose

Generates a random number between 0 and 1

rCount : integer

Purpose

Returns the number of rows in the results window.

ReadFile(offset, bytes : integer; filename : string);

Purpose

Read the specified number of bytes from the file, beginning offset bytes from the beginning of the file. The data read is available in the built-in array filebuffer. filename can be formatted using arguments like WriteLn.

ReadReg(key, entry : string) : string;

Purpose

Reads a string value from the Windows registry.

RemoveObject(objectNumber : integer);

Purpose

Removes the given object from the object set for the current image. Object numbers are based at 1.

ResetGrayMap

Purpose

Resets the contrast settings for the current window to linear.

RestoreRoi

Purpose

If there is no roi in the current image, creates in the image an roi exactly like the one in the most recently-selected image.

RestoreSettings(group : string := ‘’)

Purpose

The opposite of SaveSettings, this command restores the given collection of settings to their values before the most recent call to SaveSettings. If group is empty, then all settings will be restored. See the Set command for a list of group names.

ResultsAreVisible : boolean

Purpose

Returns whether or not the results window is visible.

RevertToSaved

Purpose

Removes any changes made to the current window.

RoiToObject

Purpose

Converts the current roi (which must be a polygon) into an object. The object’s number will be equal to the number of objects in the object set for the current image.

Rotate180(b : boolean)

Purpose

Rotates the current window by 180 degrees, and creates a new window is b is true.

RotateLeft(b : boolean)

Purpose

Rotates the current window left by 90 degrees, and creates a new window is b is true.

RotateRight(b : boolean)

Purpose

Rotates the current window right by 90 degrees, and creates a new window is b is true.

round(n : real) : integer

Purpose

Converts a real value to an integer with rounding

Save

Purpose

Saves the current window to its name.

SaveAll

Purpose

Saves all windows.

SaveAs(name : string := ‘’)

Purpose

Saves the current image using the specified file name. If name is omitted, the save as dialog is displayed.

SaveDensityCalibration(name : string := ‘’)

Purpose

Saves the current density calibration to a file. If name is omitted,, the user is prompted for a file.

SaveSelectionAs(name : string := ‘’)

Purpose

Save the area outlined by the current roi into the given file. If the filename is empty, then the user will be prompted to select the filename.

SaveSettings(group : string := ‘’)

Purpose

The opposite of RestoreSettings, this command causes ImageTool to save all of the indicated settings so that changes made are not permanent. Note that ImageTool does not undo this when the macro exits, so care must be taken when using SaveSettings. In particular, if a macro exits early (as a results of a run-time error or the user canceling the process), then the settings are not automatically restored. This may be changed in a later release, but for now, care must be exercised. If group is empty, then all settings will be restored.

See the Set command for a list of group names.

SaveSpatialCalibration(name : string := ‘’)

Purpose

Saves the current spatial calibration to a file. If name is omitted,, the user is prompted for a file.

ScaleConvolutions(scale : boolean)

Purpose

Changes the behavior of convolution filters. If set to true, then filters will automatically scale their results to the gray scale range of the image (0-255 for 8 bit images, 0-65535 for 16 bit images). If set to false, filters will clip values outside the range.

ScanConvert(Callback : procedure)

Purpose

Iterates over every pixel in the current roi, and calls the procedure Callback for every scan line. The procedure should take three integer arguments:

procedure MyCallback(fromX, toX, y : integer);

ImageTool will call the procedure once for every horizontal line in the region of interest, settings the parameter values to describe the current line. The callback routine will be called exactly once for every pixel in the roi, but there is no guarantee of the order in which the scan lines will be processed. The following macro uses the procedure FillIt to fill the roi with black.

procedure FillIt(fx, tx, y : integer);

var

 i,len : integer;

begin

 len := tx-fx+1;

 GetRow(fx, y, len);

 for i := 1 to len do
 linebuffer[i] := 0;

 PutRow(fx, y, len);

end;

macro ‘Fill Current Roi With Black’;

begin
 ScanConvert(FillIt);

end;

See also

Trace

SelectAll

Purpose

Creates a rectangular ROI covering the entire image.

SelectPic(n : integer)

Purpose

Activates the Nth image window. Also accepts pid numbers (see PidNumber function).

SelectSlice(n : integer)

Purpose

Selects the nth slice in the current stack window.

SelectSource(name : string := ‘’)

Purpose

If name is provided, selects the source with that name for TWAIN acquisition. If name is omitted, the select source dialog is displayed.

SelectWindow(name : string)

Purpose

Activate the window with the title ‘name’
Set(group, values : string)

Purpose

Set ImageTool settings. ‘group’ must be one of the value ImageTool settings group names, and values can be a group of settings name := value groups separated by semicolons. The values can be formed using WriteLn-style arguments.

Description

The following is a list of the settings groups and values that are currently supported. Note that the group and value names are not case- ms4551 ensitive.

Group
Value
Notes

Angle
radians
If present, sets the measurement units to radians

degrees
If present, sets the measurement units to degrees

Area
flags
Can be any combination of the following values, with multiple values separated by “|”,, i.e., ‘flags:=area|perimeter’:

area, perimeter, min gray, max gray, mean gray, mode gray, median gray, std dev, id, bsid. “id” is for integrated density, “bsid” for background-subtracted integrated density

Binary IO
width
Specifies the width of the image, in pixels. If the image data is aligned on 2 or 4 byte boundaries, do not include those padding bytes here. Must be a positive integer. Used by both export and import.

height
Specifies the height of the image, in pixels Must be a positive integer. Used by both export and import.

bpp
Specifies the number of bits per pixel for grayscale images. Must be a value between 8 and 16 inclusive. Used by both export and import.

padding
Specifies the scan line padding for the image data. Must be 1, 2, or 4 (bytes). Used by both export and import.

number
Specifies the number of images to load. Must be a positive integer. Used only by import.

offset
Specifies the offset to the first image in the file, in bytes. Must be a non-negative integer. Used by both export and import.

gap
Specifies the number of bytes between images in the file. Must be non-negative integer. Used only by import.

color
Indicates whether or not the image is color. Must be one or ‘true’ or ‘false’. Used only by import.

inverted
Indicates whether or not the image is inverted in the y axis (that is, do you want it displayed flipped over). Must be one or ‘true’ or ‘false’. Used by both export and import.

swap
Indicates whether or not the image data is bytes swapped. This only applies to grayscale images with a depth greater than 8. Must be one or ‘true’ or ‘false’. Used by both export and import.

unsigned
Indicates whether or not the image data is unsigned. This only applies to grayscale data. Must be one or ‘true’ or ‘false’. Used by both export and import.

black
Indicates the value for black. Must be one of ‘zero or ‘nonzero’. Used only by import.

Convolution
convolve entire image
Must be either “0” or “1”. If 1, then convolutions with apply to the entire image; otherwise, they will only apply to the current Roi.

Binary neighborhood
A value between 1 and 8, it refers to the value by the same name in the convolution settings page.

Open/close iterations
A value between 1 and 8, it refers to the value by the same name in the convolution settings page.

Count/Tag
radius
The radius of the marker in pixels

color
Three numbers, between 0-255, separated by spaces, that describe the red, green, and blue components of the tag color.

Distance
flags
Can be any combination of the following values, with multiple values separated by “|”:

length, min gray, max gray, mean gray, mode gray, median gray, std dev

Find Objects
selection
one of “manual” or auto”

min size
The minimum size, in pixels, of objects.

number color
Three numbers, between 0-255, separated by spaces, that describe the red, green, and blue components of the color used for the object number annotations

outline color
Three numbers, between 0-255, separated by spaces, that describe the red, green, and blue components of the color used for the object outline annotations

search entire image
true or false

include edge objects
true or false

exclude background
true or false

show number of objects
true or false

send to results
true or false

show numbers
true or false

show outlines
true or false

General
math after contrast
true or false

Histogram
flags
same as area

dialog
if true, then the dialog will be displayed.

Image
ask save untitled
true or false

show full pathnames
true or false

scale factor
One of -1, -2, -3, -4, 1, 2, 3, 4, where negative numbers represent fractional scaling factors.

origin
“ul”, “ll”, plus “0”, or “1”. For example, to set the origin to the upper-left corner based at 0, you would use “ul0”

unsigned
true or false

Line Profile
flags
Same as distance

dialog
If true, then the profile graph will be displayed.

width
The width of the line.

invert graph
true or false

Point Histogram
flags
Can be any combination of the following values, with multiple values separated by “|”:

x, y, value

Precision
angle
A number between 0 and 15, inclusive

area
A number between 0 and 15, inclusive

length
A number between 0 and 15, inclusive

stats
A number between 0 and 15, inclusive

Several plug-ins support set interfaces as well. Those will be added to this document in the future.

SetBackgroundColor(gray : integer)
SetBackgroundColor(r, g, b : integer)

Purpose

Changes the background color to the specified value.

SetCursor(shape : string)

Purpose

Changes cursor shape. Set 'shape' to 'watch', 'cross', 'arrow' or 'finger'.

SetDensitySlice(int min, int max)

Purpose

Sets the minimum and maximum threshold values. No change will be made to the image.

SetFont(name : string)

Purpose

Changes the current text font, which is the font used to display text in image windows by the Write and WriteLn commands.

SetFontSize(points : integer)

Purpose

Changes the size of the current text font, which is the font used to display text in image windows by the Write and WriteLn commands. The size should be specified in points.

SetForegroundColor(gray : integer)
SetForegroundColor(r, g, b : integer)

Purpose

Changes the background color to the specified value.

SetNewSize(width,height : integer; bits : integer := 8)

Purpose

Specifies width and height of new image windows. If bits is provided, it must be one of 8, 16, or 24.

SetPalette(filename : string := ‘’)

Purpose

Loads the given color table file. If no name is given, the user is prompted to select a file.

SetScale(scale : real; unit : string; AspectRatio : real := 1.0)

Purpose

Scale is the number of pixels per unit of measurement. Set ‘Unit’ to 'nm', 'µm', 'mm', 'cm', 'meter', 'km', inch', 'ft', 'mile' or 'pixel'. AspectRatio (optional) is the x/y pixel aspect ratio. Use SetScale(0,'pixel') to disable spatial calibration and SetScale(0,'') to activate the Set Scale dialog box.

SetText(settings : string);

Purpose

Changes the alignment and display options for Write and WriteLn onto images. settings is just a string containing the settings to change:

Value
Effect

with
Causes the text to be drawn opaque, using the current background color. The image data below the text will not be visible.

no
Causes the text to be drawn transparent, allowing the image data below the text to be seen.

right
Causes the text to be right-justified. Cannot be used with either center or left.

center
Causes the text to be center-justified. Cannot be used with either right or left.

left
Causes the text to be left-justified. Cannot be used with either center or right.

bottom
Causes the bottom of the text to be aligned with the current position. The bottom of the text is below the bottom of trailing characters such as g and y. Cannot be used with base or top.

base
Causes the baseline of the text to be aligned with the current position. The baseline of the text does not include the trailing part of letters such as g and y. Cannot be used with bottom or top.

top
Causes the top of the text to be aligned with the current position. Cannot be used with bottom or base.

italic
Causes the text to be italic.

underline
Causes the text to be underlined.

bold
Causes the text to be bold.

SetThreshold(thresh : integer)

Purpose

Changes the binary threshold values. The minimum value is set to 0, the maximum to thresh. This is the same as calling SetDensitySlice(0, thresh).

Settings(page : string := ‘’)

Purpose

Shows the ImageTool setting dialog. The page name is optional. If provided, the selected page is shown. To select the settings page for a plug-in, use the plug-in filename. If no matching page is found, the macro terminates with a run-time error.

SetWindowLevel(w, l : integer)

Purpose

Sets the window and level values for a 16 bit grayscale image to the specified values. If both w and l area 0, then the image is auto-levelled.

ShowMessage(message : string)

Purpose

Displays 'message' in a message box. Accepts multiple arguments like the Pascal Write routine. The only button in the dialog is the OK button.

ShowMessageCancel(message : string) : boolean

Purpose

Same as ShowMessage, but the dialog contains a cancel button as well. The return value will be true if the user pressed the cancel button.

ShowResults()
ShowResults(show : boolean)

Purpose

Shows or hides the results window. If the results window is hidden, then all results will be placed into the single line temporary buffer and not to the results window itself. To determine whether or not the results window is visible, use the ResultsAreVisible command. You can call the routine with no parameters to restore the results window to its state at the beginning of the macro. This allows you to easily control the state of the window without a boolean variable to hold the visibility state: simply show or hide the results window as necessary, execute the body of your macro, and call ShowResults with no parameters at then end of the macro. Note that ImageTool will automatically restore the results window if the macro exits with an error, but will leave the window in its current state if the macro exits normally.

sin(n : real) : real

Purpose

Returns sine of n (radians).

SliceNumber : integer

Purpose

Returns number of current slice in a stack.

sqr(n : real) : real

Purpose

Returns square of n (that is, n*n).

sqrt(n : real) : real

Purpose

Returns the square root of n. If n is negative, a run-time error occurs.

Stack(op : string)

Purpose

Performs the given stack operation on the current image window, where op is one of ‘lock’, ‘unlock’, ‘first’, ‘last’, ‘next’, ‘previous’, ‘play’, ‘play back’, ‘stop’, or ‘show all’

StringToNum(str : string) : real

Purpose

Converts a string to a real number. Returns zero if the string contains no digits.

Tag

Purpose

Runs the Count and Tag command (from the Analysis menu).

TickCount : integer

Purpose

Returns the number of ticks (sixtieths of a second) since system last started

TileWindows

Purpose

Arranges all of the image windows.

Trace(Callback : procedure)

Purpose

Iterates over every pixel in the border of the current roi, and calls the procedure Callback for each pixel. The procedure should take two integer arguments:

procedure MyCallback(x, y : integer);

ImageTool will call the procedure once for every pixel on the region of interest, setting the parameter values to describe the point. If the current roi is a line or angle, then Trace will iterate over all of the points on each segment of the line. If the roi is polygonal or elliptical, then Trace will iterate over the pixels on the border of the polygon. The callback routine will be called exactly once for every pixel in the roi in order starting at the first point used to define the roi. The following macro uses the procedure TraceIt to outline the roi with black.

procedure TraceIt(x, y : integer);

begin
 PutPixel(x, y, 0);

end;

macro ‘Trace Current Roi In Black’;

begin
 Trace(TraceIt);

end;

See also

ScanConvert

trunc(n : real) : integer

Purpose

Converts a real value to an integer with truncation

Undo

Purpose

Removes all changes to the current image.

UpdateLUT

Purpose

Takes the current contents of the lut buffers (RedLUT, GreenLUT, BlueLUT), and copies it into the color table for the current image. Note that the current image must be eight bits deep. The bits of the image are not changed, only the color table. Use ApplyLUT to update the image's bits.

UpdateProgress(int step; int steps := 100)

Purpose

Updates the progress bar in the status portion of the ImageTool window to reflect the indicated progress. This is useful for long operations in which you want to provide the user some feedback. It should not be called too often, however, as it is significantly slower than are the pixel operations (GetPixel, PutPixel, GetRow, PutRow, GetColumn, PutColumn).

UpdateWindow

Purpose

Forces the topmost window to redraw. By default, the pixel operations (GetPixel, PutPixel, GetRow, PutRow, GetColumn, PutColumn) do not force the window to repaint for performance reasons. Calling UpdateWindow will force a repaint. Note that if you are using UpdateProgress, you need not call UpdateWindow as the window will be repainted as a side effect of that call.

Wait(seconds : real)

Purpose

Delays at least as long as specified. Fractions of a second are allowed, e.g., wait(1.5)

WindowTitle : string

Purpose

Returns a string containing the title of the active window

Write(value : string)
WriteLn(value : string)

Purpose

Places text into the current window.

If the topmost window is an image window, the text is formatted as a text annotation using the current font (as set by the SetFont and SetFontSize commands). The font color will be the current foreground color. If MoveTo has been called, the text will be aligned with the point specified; otherwise it will be aligned to the top-left corner of the bounding rectangle of the current polygon roi. There is no difference between using Write and WriteLn in this case.

If the topmost window is a text window, the text is inserted at the current insertion point. The current font settings are not used in this case. If WriteLn is called, then a newline will be added after the inserted text.

WriteReg(key, entry : string; value : string)

Purpose

Writes a string value to the Windows registry. The full path to the entry will be:

HKEY_CURRENT_USER\Software\UTHSCSA\ImageTool\CurrentVersion\

Zoom(to : integer)

Purpose

Changes the zoom factor to the specified value. Negative values represent scale factors below 1:1, for example, -2 scales the image to ½ size. Legal values are -4, -3, -2, -1, 1, 2, 4, and 8. Use GetZoom to retrieve the current zoom factor.

16.
Built-In Commands by Group

A. Annotations

CopyAnnotations

MakeAnnotation

MergeAnnotationsIntoImage

MoveTo

SetBackgroundColor

SetFont

SetFontSize

SetForegroundColor

SetText

Write

WriteLn

B. Clipboard

Copy

Paste

C. Color

GetColor

SetBackgroundColor

SetForegroundColor

D. Drawing on Images

DrawBoundary

Erase

Fill

Invert

LineTo

MoveTo

E. File Manipulation

Export

GetOpenFileName

GetSaveFileName

Import

LoadDensityCalibration

LoadSpatialCalibration

Open

ReadFile

Save

SaveAll

SaveAs

SaveDensityCalibration

SaveSelectionAs

SaveSpatialCalibration

F. Image Analysis

Calibrate

Calibrated

FindObjects

GetHistogramLength

GetLineProfileLength

GetScale

GetWindowLevel

Histogram

LineProfile

Points

Tag

G. Image Creation

AddSlice

Duplicate

Import

IndexedToRGB

MakeNewStack

MakeNewWindow

MergeAnnotationsIntoImage

Open

Paste

SetNewSize

H. Image Manipulation

ChoosePic

ChooseSlice

GetColumn

GetHistogramLength

GetLineProfileLength

GetPicSize

GetPixel

GetRow

GetScale

GetWindowLevel

GetZoom

nPics

nPixels

nSlices

PicNumber

PidExists

PidNumber

Print

PutColumn

PutPixel

PutRow

RevertToSaved

ScanConvert

SelectPic

SelectSlice

SelectWindow

Trace

Undo

UpdateWindow

Zoom

I. Image Math

AddConstant

ChangeValues

ImageMath

Invert

MultiplyByConstant

J. Image Processing

ApplyLUT

AutoDensitySlice

AutoThreshold

Convolve

cValue

Dilate

Erode

Filter

FlipHorizontal

FlipVertical

GetThresholds

GetUserThresholds

GetWindowLevel

IndexedToRGB

Invert

InvertLUT

MakeBinary

PlugIn

ResetGrayMap

Rotate180

RotateLeft

RotateRight

ScaleConvolutions

SetDensitySlice

SetPalette

SetThreshold

SetWindowLevel

UpdateLUT

K. Mathematical Functions

abs

arctan

BitAnd

BitOr

cos

cValue

exp

ln

odd

ord

pi

random

round

sin

sqr

sqrt

StringToNum

trunc

L. Miscellaneous

GetTime

PlugIn

PrintSetup

SelectSource

SetFont

SetFontSize

SetScale

TickCount

UpdateProgress

Wait

M. Object Set Manipulation

CopyObjects

nObjects

ObjectToRoi

RemoveObject

RoiToObject

N. Registry

ReadReg

WriteReg

O. Regions of Interest (rois)

GetLine

GetRoi

GetUserAngleRoi

GetUserLineRoi

GetUserPoint

GetUserRoi

InsetRoi

KillRoi

MakeAngleRoi

MakeAnnotation

MakeEllipseRoi

MakeLineRoi

MakePolygonRoi

MakeRoi

MoveRoi

ObjectToRoi

RestoreRoi

RoiToObject

SelectAll

P. Results Window

AddResults

CopyResults

CopyRows

CutRows

DeleteRows

DiscardResults

GetResults

Print

rCount

ResultsAreVisible

ShowResults

Q. Serial Port

GetSerial

OpenSerial

PutSerial

R. Settings

RestoreSettings

SaveSettings

Set

SetFont

Settings

S. Stacks

AddSlice

AverageSlices

ChooseSlice

DeleteSlice

MakeNewStack

nSlices

Open

SelectSlice

SliceNumber

Stack

T. String Manipulation

chr

concat

delete

Format

GetString

length

ord

pos

StringToNum

WindowTitle

U. Text Window

MakeNewTextWindow

Open

Write

WriteLn

V. Thresholding

AutoDensitySlice

AutoThreshold

GetThresholds

GetUserThresholds

MakeBinary

SetDensitySlice

SetThreshold

W. User Interaction

Beep

Button

CascadeWindows

Exit

GetColor

GetFont

GetMouse

GetNumber

GetOpenFileName

GetSaveFileName

GetString

GetThresholds

GetUserAngleRoi

GetUserLineRoi

GetUserPoint

GetUserRoi

GetUserThresholds

KeyDown

PrintSetup

ShowMessage

ShowMessageCancel

X. Window Manipulation

CascadeWindows

ChoosePic

Close

CloseAll

Dispose

DisposeAll

GetZoom

MakeNewStack

MakeNewTextWindow

MakeNewWindow

MoveWindow

NextWindow

nPics

PicNumber

PidExists

PidNumber

SelectPic

SelectWindow

TileWindows

UpdateWindow

WindowTitle

PAGE
43

